62 resultados para fiber-Bragg-grating sensor

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fiber Bragg grating temperature sensor is proposed and experimentally demonstrated with a long-period grating as a linear response edge filter to convert wavelength into intensity-encoded information for interrogation. The sensor is embedded into an aluminum substrate with a larger coefficient of thermal expansion to enhance its temperature sensitivity. A large dynamic range of 110 degreesC and a high resolution of 0.02 degreesC are obtained in the experiments. The technique can be used for multiplexed measurements with one broadband source and one long-period grating, and therefore is low Cost. (C) 2004 Society of PhotoOptical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) sensor for the measurement of high temperature is proposed and experimentally demonstrated. The interrogation system of the sensor system is simple, low cost but effective. The sensor head is comprised of one FBG and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured basis of the wavelength shifts of the FBG induced by strain. A dynamic range of 0-800 degrees C and a resolution of 1 degrees C have been obtained by the sensor system. The experiment results agree with theoretical analyses. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensor packaged by using a hard core in the membrane is presented. By utilizing the unique membrane-based FBG packagine method, its pressure sensitivity has been effectively enhanced. The pressure sensitivity of the FBG reaches 5.75 X 10(-3)/MPa within the pressure range of 0.0.16 Mpa. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 1279-1281, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24335

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.