20 resultados para ferricyanide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In the present study, platinum nanoparticles modified with Prussian blue (PB) have been synthesized by a heterogeneous catalytic reaction. Transmission electronic microscopy (TEM) confirmed the deposition of nanoclusters around the Surfaces of platinum particles, and spectroscopic studies verified that the molecular composition of the nanoclusters was dominantly PB and a minority of platinum ferricyanide. Thus, it was shown that the platinum particles behaved not only as catalysts for the growth of PB, but also as a reactant to generate a PB analogue complex.
Resumo:
In this study, we report the effects of ferricyanide on organisms based on the changes in physiological state and morphology of Escherichia coli (E coli) DH 5 alpha after being pretreated by ferricyanide. The impact on bacterial cell growth and viable rate of exposure to different concentrations of ferricyanide was determined, and the morphology change of E. coli was studied by atomic force microscopy (AFM). Finally, recovery test was used to evaluate the recovery ability of injured cells. The results showed that the effects on growth and morphology of E. coli were negligible when the concentration of ferricyanide was below 25.0 mM. While the results showed 50.8% inhibition of growth in the presence of 50.0 mM ferricyanide for 3 h, 89.6% viability was detected by flow cytometry (FCM) assay. AFM images proved that compact patches appeared on the bacterial surface and protected the bacterial viability. Furthermore, the results revealed that deterioration of bacterial surface closely related to the incubation time from 0.5 to 3 h at 100.0 mM ferricyanide. In the recovery test, microbial cell population and dissolved oxygen individually decreased 36.7% and 28.3% with 25.0 mM ferricyanide.
Resumo:
In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.
Resumo:
Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 muM.
Resumo:
Polyethylenimine (PEI)-protected Prussian blue nanocubes have been simply synthesized by heating an acidic mixture of PEI, FeCl3, K3Fe(CN)(6), and KCI. The experiment results presented here demonstrate that the pH of the mixture plays an important role in controlling the shape and composition of the resultant product.
Resumo:
In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).
Resumo:
In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.
Resumo:
Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.
Resumo:
We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.
Resumo:
Rotating minidisk-disk electrode (RMDDE) was developed by replacing ring electrode of rotating ring-disk electrode (RRDE) with a minidisk electrode. Its applications were demonstrated by studying electrochemical reactions of ferricyanide and divalent copper. The replacement of ring electrode by minidisk electrode results in following advantages. First, the fabrication of RMDDE is easier than that of RRDE with the same electrode material. Second, there is more freedom in choosing electrode materials and sizes, since it is difficult to make thin ring electrodes of RRDE with fragile materials. Third, the replacement of ring electrode by minidisk electrode saves electrode materials, especially rare materials. Finally, the substitution of minidisk electrode for ring electrode allows using multiple minidisks for simultaneous monitoring of multiple components. Therefore, RMDDE is a promising generator-collector system, especially when special generator-collector systems are not commercially available, such as corrosion study and electrocatalysis study of new electrode materials.
Resumo:
Chemical functionalization of single-walled carbon nanotubes (SWNTs) has constructed plenty of new structures with ample new properties into them. But the modification was often confined to organic molecules, either by covalence or non-covalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: Prussian blue (PB). And the molecular interactions between them were firstly investigated. Interestedly, pi-pi stacking interaction coupled with ionic interaction was found between SWNTs and PB. The electrochemical properties of SWNTs-PB were also investigated. It would pave a new pathway to manipulate molecular entities of SWNTs by cooperation with functional inorganic electroactive compounds.
Resumo:
Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA(+)) or ClO4- is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k(12), is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K4Fe(CN)(6) in water when the concentration of TCNQ in the DCE phase is in excess. The k(12) dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ and ferricyanide, k(21), is also obtained by SECM and these results cannot be explained by the same manner.
Resumo:
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.
Resumo:
In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.