141 resultados para effective moduli

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present model is shown. The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to consider randomness in fiber section orientation in a statistical sense. A full comparison is made between various micromechanics methods and with the Hashin and Shtrikman's bounds. The present method provides convergent and reasonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a micromechanics analysis of the elastic solids weakened by a large number of microcracks in a plane problem. A new cell model is proposed. Each cell is an ellipse subregion and contains a microcrack. The effective moduli and the stress intensity factors for an ellipse cell are obtained. The analytic closed formulas of concentration factor tensor for an isotropic matrix containing an anisotropic inclusion are derived. Based on a self-consistent method, the effective elastic moduli of the solids weakened by randomly oriented microcracks are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

材料的宏细观破坏理论是当前固体力学和材料科学研究的一个重要课题。本文在对连续损伤理论和细观损伤理论进行评述的基础上,着重研究了脆性材料中微裂纹细观损伤问题。本文建立了一套完整的细观损伤理论来分析二维多裂纹体问题。该理论的基本方法是基本解叠加法,此方法直接考虑了微裂纹之间的相互作用以及有限边界的影响。通过叠加原理,使在裂纹面和外边界满足边界条件,用边界配置法化控制方程组为线性方程组,进行数值求解。本文以裂纹密度为参量,针对微裂纹随机分布和平行分布两种情况,计算了无限大体中代表性体元(VRVE)和多裂纹有限体的有效弹性模量。数值计算结果表明,本文所用方法具有统一与直能的优点,采用此法所得模量与试验结果吻合,在处理多裂纹体问题时计算效率高、精度好,对求解多裂纹问题非常有效。此外,通过建立微裂纹晶内扩展准则和穿晶扩展准则,分析了微裂纹扩展连接直至裂纹形成、扩展这一全过程的细观力学行为,对微裂纹的损伤演化过程进行了直接模拟,计算了含微裂纹矩形板的宏观应国变关系曲线。本文进一步提出了三维微裂纹相互作用的数学分析方法 — 扁球坐标和位移函数法,并采用边界配置法或裂纹面面力平均化方法进行求解。数值结果表明,扁球坐标和位移函数法分析三维微裂纹的相互作用问题是有效可行的。最后,本文提出了埋入基体的镶嵌体胞模型,建立了计算非均质体有效弹性模量的解析表达式。该式从理论上讲是严格的,且具有形式简单、内涵丰富及有效弹性模量能显式表达等优点。针对球体含球形夹杂、裂纹及旋转扁球体含球形夹杂、裂纹等不同体胞结构计算了其有效弹性模量,并与其他细观力学方法所得结果进行了比较。本文还将埋入基体的镶嵌体胞模型进行了发展,研究了二相颗粒复合材料的弹塑性本构关系(基体为弹性而颗粒为塑性材料),计算了球体含球形颗粒用旋转扁球体含扁球状颗粒两种体胞结构的宏观应力 - 应变曲线。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An accurate method which directly accounts for the interactions between different microcracks is used for analyzing the elastic problem of multiple cracks solids. The effective elastic moduli for randomly oriented cracks and parallel cracks are evaluated for the representative volume element (RVE) with microcracks in infinite media. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method is simple and provides a direct and efficient approach to dealing with elastic solids containing multiple cracks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of transformation field is developed to estimate the effective properties of graded composites whose inclusions have arbitrary shapes and gradient profiles by means of a periodic cell model. The boundary-value problem of graded composites having arbitrary inclusion shapes is solved by introducing the transformation field into the inclusion region. As an example, the effective dielectric response of isotropic graded composites having arbitrary shapes and gradient profiles is handled by the transformation field method (TFM). Moreover, TFM results are validated by the exact solutions of isotropic graded spherical inclusions having a power-law profile and good agreement is obtained in the dilute limit. Furthermore, it is found that the inclusion shapes and the parameters of the gradient profiles can have profound effect on the effective properties of composite systems at high concentration of inclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the 'average stress in the matrix' concept of Mori and Tanaka (:Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are takes to the assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite are presented under a transverse shear loading situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

波浪作用下海床的稳定性分析是海洋工程地质评价的重要内容。海床的稳定性可通过计算分析其随时间变化的有效应力场来评估。建议了一个周期载荷作用下土体的本构模型,并用于计算波浪作用下海床的应力与变形。采用Biot固结理论和有限单元法,分析了海床的动态应力场与孔隙水压力场。波浪作用下两种渗透系数时有效应力的动态变化过程结果对比,反映了渗透消散作用对海床有效应力变化的影响。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of determining the micro-cantilever residual stress gradients by studying its deflection and curvature is presented. The stress gradients contribute to both axial load and bending moment, which, in prebuckling regime, cause the structural stiffness change and curving up/down, respectively. As the axial load corresponds to the even polynomial terms of stress gradients and bending moment corresponds to the odd polynomial terms, the deflection itself is not enough to determine the axial load and bending moment. Curvature together with the deflection can uniquely determine these two parameters. Both linear analysis and nonlinear analysis of micro-cantilever deflection under axial load and bending moment are presented. Because of the stiffening effect due to the nonlinearity of (large) deformation, the difference between linear and nonlinear analyses enlarges as the micro-cantilever deflection increases. The model developed in this paper determines the resultant axial load and bending moment due to the stress gradients. Under proper assumptions, the stress gradients profile is obtained through the resultant axial load and bending moment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An embedded cell model is presented to obtain the effective elastic moduli and the elastic-plastic stress-strain relations of three-dimensional two-phase particulate composites. Each cell consists of an ellipsoidal inclusion surrounded by a finite ellipsoidal matrix that embedded in an infinite matrix. When both matrix and particle are elastic, the effective elastic moduli are derived which is an exact analytic formula without any simplified approximation that can be expressed in an explicit form. Further, the elastic-plastic stress-strain relations are obtained for spherical cells and oblate spheroid cells, in which the matrix is elastic and the particle is elastic-plastic. In addition, the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC) is investigated by a systematic approach [1] in which the matrix is elastic-plastic and the particle is elastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method is presented for solving the plane elasticity problem of finite plates with multiple microcracks. The method directly accounts for the interactions between different microcracks and the effect of outer boundary of a finite plate. Analysis is based on a superposition scheme and series expansions of the complex potentials. By using the traction-free conditions on each crack surface and resultant forces relations along outer boundary, a set of governing equations is formulated. The governing equations are solved numerically on the basis of a boundary collocation procedure. The effective Young's moduli for randomly oriented cracks and parallel cracks are evaluated for rectangular plates with microcracks. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method provides a direct and efficient approach to deal with finite solids containing multiple microcracks.