微裂纹细观损伤理论
Contribuinte(s) |
王自强 |
---|---|
Data(s) |
1999
|
Resumo |
<span style="color: #000000; font-family: 'Trebuchet MS','Lucida Sans Unicode',Arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: 22px; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; background-color: #ffffff; display: inline ! important; float: none">材料的宏细观破坏理论是当前固体力学和材料科学研究的一个重要课题。本文在对连续损伤理论和细观损伤理论进行评述的基础上,着重研究了脆性材料中微裂纹细观损伤问题。本文建立了一套完整的细观损伤理论来分析二维多裂纹体问题。该理论的基本方法是基本解叠加法,此方法直接考虑了微裂纹之间的相互作用以及有限边界的影响。通过叠加原理,使在裂纹面和外边界满足边界条件,用边界配置法化控制方程组为线性方程组,进行数值求解。本文以裂纹密度为参量,针对微裂纹随机分布和平行分布两种情况,计算了无限大体中代表性体元(VRVE)和多裂纹有限体的有效弹性模量。数值计算结果表明,本文所用方法具有统一与直能的优点,采用此法所得模量与试验结果吻合,在处理多裂纹体问题时计算效率高、精度好,对求解多裂纹问题非常有效。此外,通过建立微裂纹晶内扩展准则和穿晶扩展准则,分析了微裂纹扩展连接直至裂纹形成、扩展这一全过程的细观力学行为,对微裂纹的损伤演化过程进行了直接模拟,计算了含微裂纹矩形板的宏观应国变关系曲线。本文进一步提出了三维微裂纹相互作用的数学分析方法 — 扁球坐标和位移函数法,并采用边界配置法或裂纹面面力平均化方法进行求解。数值结果表明,扁球坐标和位移函数法分析三维微裂纹的相互作用问题是有效可行的。最后,本文提出了埋入基体的镶嵌体胞模型,建立了计算非均质体有效弹性模量的解析表达式。该式从理论上讲是严格的,且具有形式简单、内涵丰富及有效弹性模量能显式表达等优点。针对球体含球形夹杂、裂纹及旋转扁球体含球形夹杂、裂纹等不同体胞结构计算了其有效弹性模量,并与其他细观力学方法所得结果进行了比较。本文还将埋入基体的镶嵌体胞模型进行了发展,研究了二相颗粒复合材料的弹塑性本构关系(基体为弹性而颗粒为塑性材料),计算了球体含球形颗粒用旋转扁球体含扁球状颗粒两种体胞结构的宏观应力 - 应变曲线。</span> |
Identificador | |
Idioma(s) |
中文 |
Palavras-Chave | #固体力学 #细观损伤理论 #微裂纹 #相互作用 #有效模量 #损伤演化过程 #micromechanical damage theory #microcracks #interaction #effective moduli #damage evolution process |
Tipo |
学位论文 |