232 resultados para diode pump
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Low temperature GaAs (LT-GaAs) was successfully grown at the temperature of 550 degrees C by metal organic vapor phase epitaxy on a semi-insular GaAs substrate. With such an absorber as well as an output coupler we obtain Q-switched mode-locked (QML) 1064 nm Nd:GdVO4 laser pumped by diode laser with high repetition rate, formed with a simple flat-flat cavity. The repetition rate of the Q-switched envelope increased from 100 to 660 kHz as the pump power increased from 2.28 to 7.29 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of similar to 1.36 GHz. A maximum average output power of 953 mW was obtained. The dependence of the operational parameters on the pump power was also investigated experimentally. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Simultaneous Q-switching and mode-locking (QML) is accomplished in a diode-pumped Nd:YAG laser using low-temperature GaAs (LT-GaAs) as the saturable absorber, which also acts as an output coupler at the same time. The repetition rate of the Q-switched envelope increased from 25 to 40 kHz as the pump power increased from 2.2 to 6.9 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 714 MHz. A maximum average output power of 770 mW was obtained. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Incorporating the shielded method and post-processing method, a 75 mW single frequency Yb-doped DFB fiber laser was obtained with a 250 mW laser diode pump source at 978 nm. The threshold of the laser is 2 mW. The laser is single-polarization operation and the output power fluctuation is less than 0.2 mW in one hour when the pump power is 250 mW.
Resumo:
We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.
Resumo:
We reported on a diode end-pumped AO Q-switched Tm:YAP laser at 1937 nm. The average output power was 3.9 W, with a slope efficiency of 29.4% and optical-optical conversion efficiency of 21.6% at a 5-kHz repetition rate. The temperature dependency of the output power and the pulse width at different repetition rates were investigated in details.
Resumo:
A diode stack end-pumped Nd:YVO4 slab laser at 1342 nm with near-diffraction-limited beam quality by using a hybrid resonator was presented. At a pump power of 139.5 W, laser power of 35.4 W was obtained with a conversion efficiency of 25.4% of the laser diode to laser output. The beam quality M-2 factors were measured to be 1.2 in the unstable direction and 1.3 in the stable direction at the output power of 29 W. (C) 2009 Optical Society of America
Resumo:
CW laser output has been demonstrated for polycrystalline transparent 10 at.% Yb3+-doped Y2O3 ceramics. End-pumped with 970 nm laser diode, a maximum output power of 5.5 W has been obtained with absorbed pump power of 31.1 W. The slope efficiency is 25% while the threshold pump power is 5.6 W. Saturation is not observed in our experiments, indicating higher laser output can be expected with higher pump power. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A kilowatt diode-pumped solid state heat capacity laser is fabricated with a double-slab Nd:YAG. Using the theoretical model of heat capacity laser output laser characteristics, the relationships between the output power, temperature and time are obtained. The slab is 59 x 40 4.5mm(3) in size. The average pump power is 11.2kW, the repetition rate is 1kHz, and the duty cycle 20%. During the running time of 1s, the output energy of the laser has a fluctuation with the maximal output energy at 2.06J, and the maximal output average power is 2.06kW. At the end of the second, the output energy declines to about 50% compared to the beginning. The thermal effects can be improved with one slab cooled by water. The experimental results are consistent with calculation data.
Resumo:
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
By use of a laser diode as a pump source, a self-Q-switched laser from a Cr,Nd:YAG crystal is demonstrated. The output Q-switched traces are very stable, the threshold pump power is 3.5 W, the pulse duration is 50 ns, and the slope efficiency is as high as 20%. In addition, the pulse width remains constant while the pulse repetition rate Varies with pump power. (C) 2000 Optical Society of America OCIS codes: 140.0140, 140.2020, 140.3380, 140.3480, 140.3540, 140.3580.
Resumo:
We demonstrated efficient laser action of a new ytterbium-doped oxyorthosilicate crystal Yb:LuYSiO5 ( Yb: LYSO) under high-power diode-pumping. The spectroscopic features and laser performance of the alloyed oxyorthosilicate crystal are compared with those of ytterbium-doped lutetium and yttrium oxyorthosilicates. In the continuous-wave laser operation of Yb: LYSO, a maximal slope efficiency of 96% and output power of 7.8 W were respectively achieved with different pump sources. The Yb: LYSO laser exhibits not only little sensitivity to the pump wavelength drift but also a broad tunability. By using a dispersive prism as the intracavity tuning element, we demonstrated that the continuous-wave Yb: LYSO laser exhibit a continuous tunability in the spectral range of 1014-1091 nm. (c) 2006 Optical Society of America.
Resumo:
For the first time to our knowledge, the laser performance of Yb3+, Na+-codoped CaF2 single crystals was demonstrated. Self-Q-switched laser operation at 1050nm was observed for 976 nm diode pumping at room temperature. On 5 W of incident power, the repetition rate and width of the self-Q-switched pulses reached 28 kHz and 1.5 mu s, respectively. A maximal slope efficiency of 20.3% and minimal threshold absorbed pump power of 30 mW were respectively achieved with different output couplers, showing the promising application of Yb3+, Na+-codoped CaF2 crystals as compact and efficient solid-state lasers. (C) 2005 Optical Society of America.
Resumo:
We report what is believed to be the first demonstration of the laser action of Yb3+ -doped Gd2SiO5 (Yb:GSO) crystal pumped by a 940-nm laser diode at room temperature. The threshold of laser generation is only 0.85 kW/cm(2), which is smaller than the theoretic threshold of Yb:YAG (1.54 kW/cm(2)). The laser wavelength is 1090 mn. With a 2.5% output coupler, the maximum output power is 415 mW under a pump power of 5 W. By using the SESAM, the Q-switched mode locking and CW mode-locked operations are demonstrated.