262 resultados para conjugated polymer
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.
Resumo:
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.
Resumo:
Here, a fluorescent switch is constructed combining hemin, hemin aptamer, and a newly synthesized anionic conjugated polymer (ACP), poly(9,9-bis(6'-phosphate-hexyl) fluorenealt-1,4-phenylene) sodium salt (PFHPNa/PFP). In the "off-state", the fluorescence of PFP is sensitively quenched by hemin, with a high K-sv value of similar to 10(7). While in the "on-state", the formation of the aptamer/hemin complex recovers the fluorescence intensity. The fluorescent switch is sensitive and selective to hemin. To testify the universality and practicality of the fluorescent switch, a series of label-free DNA-related sensing platforms are developed, containing three DNA sensing strategies and one ATP recognition strategy. The fluorescent switch developed is simple, sensitive, and universal, which extends applications of the anionic conjugated polymers.
Resumo:
We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.
Resumo:
A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photo luminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.
Resumo:
Compared to conjugated polymer poly[2-methoxy-5- (3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) solar cells, bulk heterojunction solar cells composed of zinc oxide (ZnO) nanocrystals and MDMO-PPV have a better energy conversion efficiency, However, ultraviolet (UV) light deteriorates the performance of solar cells composed of ZnO and MDMO-PPV. We propose a model to explain the effect of UV illumination on these ZnO:MDMO-PPV solar cells. According to this model, the degradation from UV illumination is due to a decrease of exciton dissociation efficiency, Our model is based on the experimental results such as the measurements of current density versus voltage, photoluminescence, and photocurrent.
Resumo:
A novel series of white light emitting single polymers are prepared by incorporating low contents of quinacridone into the main chain of polyfluorene. This is the first report of quinacridone-containing conjugated polymer. Single layer devices (ITO/PEDOT:PSS/polymer/Ca/Al) are fabricated with these polymers. Energy transfer from fluorene segments to quinacridone unit is observed. Moreover, in the EL process, quinacridone unit can trap electrons and cannot trap holes from fluorene segments.
Resumo:
PCBM (a C-60 derivative) is so far the most successful electron acceptor for bulk-heterojunction polymer photovoltaic (PV) cells. Here we present a novel method epitaxy-assisted creation of PCBM nanocrystals and their homogeneous distribution in the matrix using freshly cleaved mica sheet as the substrate. The highly matched epitaxy relationship between the unit cell of PCBM crystal and crystallographic (001) surface of mica induces abundant PCBM nuclei, which subsequently develop into nanoscale crystals with homogeneous dispersion in the composite film.
Resumo:
Tandem polymer photovoltaic cells with the subcells having different absorption characteristics in series connection are widely investigated to enhance absorption coverage over the solar spectrum. Herein. we demonstrate efficient tandem polymer photovoltaic cells with the two stacked subcells comprising different band-gap conjugated polymer and fullerene derivative bulk heterojunction in parallel connection. A semitransparent metal layer combined with inorganic semiconductor compounds is utilized as the intermediate electrode of the two stacked subcells to create the required built-in potential for collecting photo-generated charges. The short-circuit current of the stacked cell is the sum of the subcells and the open-circuit voltage is similar to the subcells.
Resumo:
The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.
Resumo:
Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.
Resumo:
This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.
Resumo:
A novel wide-bandgap conjugated polymer (PDHFSCHD) consisting of alternating dihexylfluorene and rigidly twisted biphenyl units has been synthesized. The new fluorene-based copolymer composed of rigid twisting segments in the main-chain exhibits an optical bandgap of as high as 3.26 eV, and a highly efficient ultraviolet emission with peaks at 368 nm and 386 nm. An electroluminescence device from PDHFSCHD neat film as an active layer shows UV emission which peaks at 395 nm with a turn on voltage below 8 V By optimizing the device conditions, a peak EL quantum efficiency of 0.054% and brightness of 10 cd.m(-2) was obtained. Furthermore, blending a poly(dihexylfluorene) in the PDHFSCHD host gave pure blue emission peaking at 417 nm, and 440 nm without long wavelength emission from aggregated species. Efficient energy transfer from PDHFSCHD to PDHF was demonstrated in these blended systems. Depressed chain-aggregation of PDHF in the PDHFSCHD host can correspond to pure blue emission behaviors.
Resumo:
Optically pumped stimulated emission behavior in an organic film was demonstrated in this study. The gain material consists of a laser dye perylene doped into polystyrene (PS) matrix in an appropriate weight ratio. The sample was transversely pumped by the three harmonic output of a mode-locked Nd:YAG laser. The change of the emission spectra showed a clear threshold action and gain narrowing phenomenon when increasing the excitation intensity. Three emission peaks were observed below the excitation threshold, which are locate at 446, 475 and 506 nm, respectively. However, only the gain narrowing peak centered at 475 nm could be detected above the threshold. The spectra narrowing observed results from the amplified spontaneous emission (ASE) in the gain material. (C) 2000 Elsevier Science S.A. All rights reserved.