11 resultados para cognitive dysfunction

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

目的 研究古琴(一种古老的中国乐器)和钢琴音乐对认知的影响.方法 记录和分析了中国被试在两种音乐背景(古琴音乐,钢琴音乐)下完成听觉oddball任务的行为和事件相关电位(event-related potential,ERP)数据.结果 中国被试在本土文化的音乐环境(古琴音乐)下,前额区诱导出更大的P300,这一结果和已有的相关研究是相符的.同时,不同音乐背景对ERP产生的影响在N1和LPC(包括P300和P500)上也表现出差别:中国被试在古琴音乐背景下比钢琴音乐背景下表现出更多的右前侧颞叶的参与.结论 因为古琴音乐的五声调式和汉语发音的音调具有对应关系,因此我们推断在古琴音乐下所表现出的这种特性与被试的汉语环境有关.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The D2 dopamine (DA) receptor agonist, quinpirole, was characterized in young adult monkeys, young reserpine-treated monkeys and aged monkeys to assess the contribution of DA to age-related loss of prefrontal cortical (PFC) cognitive function, Monkeys were tested on a delayed response memory task that depends on the PFC, and a fine motor task that taps the functions of the motor cortex, In young adult monkeys, low quinpirole doses impaired performance of the PFC and fine motor tasks, while higher doses improved memory performance and induced dyskinesias and ''hallucinatory-like'' behaviors. The pattern of the quinpirole response in reserpine-treated monkeys suggested that the impairments in delayed response and fine motor performance resulted from drug actions at D2 autoreceptors, while the improvement in delayed response performance, dyskinesias and ''hallucinatory-like'' behaviors resulted from actions at postsynaptic receptors. In aged monkeys, low doses of quinpirole continued to impair fine motor performance, but lost their ability to impair delayed response performance. The magnitude of cognitive improvement and the incidence of ''hallucinatory-like'' behaviors were also reduced in the aged animals, suggesting some loss of postsynaptic D2 receptor function, The pattern of results is consistent with the greater loss of DA from the PFC than from motor areas in aged monkey brain (Goldman-Rakic and Brown, 1981; Wenk et al., 1989), and indicates that DA depletion contributes significantly to age-related cognitive decline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous studies demonstrated that huperzine A, a reversible and selective acetylcholinesterase inhibitor, exerts beneficial effects on memory deficits in various rodent models of amnesia. To extend the antiamnesic action of huperzine A to nonhuman primates, huperzine A was evaluated for its ability to reverse the deficits in spatial memory produced by scopolamine in young adult monkeys or those that are naturally occurring in aged monkeys using a delayed-response task. Scopolamine, a muscarinic receptor antagonist, dose dependently impaired performance with the highest dose (0.03 mg/kg, i.m.) producing a significant reduction in choice accuracy in young adult monkeys. The delayed performance changed from an average of 26.8/30 trials correct on saline control to an average of 20.2/30 trials correct after scopolamine administration. Huperzine A (0.01-0.1 mg/kg, i.m.) significantly reversed deficits induced by scopolamine in young adult monkeys on a delayed-response task; performance after an optimal dose (0.1 mg/kg) averaged 25.0/30 correct. In four aged monkeys, huperzine A (0.001-0.01 mg/kg, i.m.) significantly increased choice accuracy from 20.5/30 on saline control to 25.2/30 at the optimal dose (0.001 mg/kg for two monkeys and 0.01 mg/kg for the other two monkeys). The beneficial effects of huperzine A on delayed-response performance were long lasting; monkeys remained improved for about 24 h after a single injection of huperzine A. This study extended the findings that huperzine A improves the mnemonic performance requiring working memory in monkeys, and suggests that huperzine A may be a promising agent for clinical therapy of cognitive impairments in patients with Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite k-mean covering, and study its property. Covering subsets of points are repeatedly sampled to construct trial geometry space of various dimensions. The sampling corresponding to the feature space having the best cognition ability between a mode near zero and the rest is selected and the data points are partitioned on the basis of the best cognition ability. The repeated sampling then continues recursively on each block of the data. We propose this algorithm based on cognition models. The experimental results for face recognition demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have witnessed some psychological or behavioral deviation (such as aggressive behavior) might have an association with cerebral hemisphere cooperative dysfunction, however, it is still unclear whether there is an association between individuals with social cognitive bias and their hemispheric cooperative functions especially while the interhemisphere cooperative processing is under the conditions of emotional interferences. The purpose of this study is to explore the differences between the social cognitive bias group and the normal group’s interhemispheric cooperative functional activity under the conditions of with or without interferences. Methods: According to Dodge’s (1993) model of “social-cognitive mechanisms in the development of conduct disorder and depression”, a 51 items of “social cognitive bias scale” was created and was used to screen the high score group. 20 male subjects was composed of high score group and other 23 matched the control group. Stimulus tachistoscopically presented to the bilateral visual field and compared with the central. Both group’s interhemispheric cooperative functional activity were observed and compared under the conditions of without interference- i.e. base level and with the emotional interferences of white noise level and negative evaluative feedback speech level while finishing: experiment one: Chinese word-figure Stroop analogue task; experiment two: two single Chinese Characters combination task. Heart rate and respiratory rate were simultaneously recorded as index of emotional changes. Results: ① The high score group showed a decrease in processing accuracy compared with the normal group under the condition of white noise interference level in experiment one. ② Still under the condition of white noise interference level, there were more reaction time and more errors were observed in high score group than normal in experiment two. ③ Both groups showed speed up effect and the strategic processing tendency of speed-accuracy trade-off effect under the condition of white noise interference level in both experiments. ④ Between group differences of interhemipheric cooperative function were not observed under the conditions of base level and the negative evaluative feedback speech level within both experiments. Conclusion: The results suggested that interhemispheric cooperative functional differences exists between the two groups, characterized as ① differences existed in interhemispheric cooperative processing strategy between the two groups, with the high score group presented “hierarchic” deficiency strategy. ② the appearance of the differences between the two groups were condition specified , and in this research it was only under the white noise interference condition. ③ the features of the differences between the two groups were the differences on multidimensional performances and with a deficit orientation in high score group. ④ the varieties of the differences were changing with cooperative tasks, as in this research the high score group performed worse in complementary cooperative task. In addition, both group adjusted the processing strategy respectively under the condition of white noise evoked emotional interference implied that the interaction between the interhemisphere cooperative processing and emotion might exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.