4 resultados para co-operating target
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.
Resumo:
Bulk novel cemented carbides (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) are prepared by mechanical alloying and hot-pressing sintering. Hot-pressing (HP) is used to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operating cost of the novel material is much lower than a WC-Co system. The material is easy to process and the processing leads to nano-scaled, rounded, particles in the bulk material. The hardness of (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) hard material is 20.37, 21.16, 21.59 and 22.16 GPa, and the bending strength is 1257, 1238, 1211 and 1293 MPa, with the aluminum content varying from 20% to 50%. The relationship between the microstructure and the mechanical properties of the novel hard alloy is also discussed.
Resumo:
A new kind of monolithic capillary electrochromatography column with poly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically, The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed-phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.