36 resultados para changing technologies
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
表面技术能够显著提高材料功能而成为工程和产品设计的重要组成部分, 但前提是表面技术必须具有可设计性。为此, 需要开拓和发展表面组合加工技术, 进行创新。该技术的内涵体现了新材料与新技术、基础研究与产业化有机结合的特点, 具有重要的价值和广阔的前景。
Resumo:
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.
Resumo:
Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.
Resumo:
Changing the ratio of light-harvesting pigments was regarded as an efficient way to improve the photosynthesis rate in microalgae, but the underlying mechanism is still unclear. In the present study, a mutant of Anabeana simensis (called SP) was selected from retrieved satellite cultures. Several parameters related with photosynthesis, such as the growth, photosynthesis rate, the content of photosynthetic pigment, low temperature fluorescence spectrum (77K) and electron transport rate, were compared with those of the wild type. It was found that the change in the ratio of light-harvesting pigments in the mutant led to more efficient light energy transfer and usage in mutant than in the wild type. This may be the reason why the mutant had higher photosynthesis and growth rates.