220 resultados para border area
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.
Resumo:
A new area function is introduced and applied to a Berkovich tip in order to characterize the contact projected area between an indenter and indented material. The function can be related directly to tip-rounding, thereby having obviously physical meaning. Nanoindentation experiments are performed on a commercial Nano Indenter XPsystem. The other two area functions introduced by Oliver and Pharr and by Thurn and Cook respectively are involved in this paper for comparison. By comparison from experimental results among different area functions, the indenter tip described by the proposed area function here is very close to the experimental indenter.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.
Resumo:
Molecular dynamics simulations of nanoindentation are performed on monocrystal copper. A new "contact atoms" method is presented for calculating the contact area. Compared with conventional methods, this method can provide the contact area more accurately not only for sink-in but also for pile-up situation. The effect of tip radius on indentation is investigated too. The results indicate that the measured hardness of the material will become higher as the tip radius increases.
Resumo:
An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate border="0" alt="View the MathML source" title="View the MathML source" width="53" height="18" />when plotted against the effective stress intensity factor range border="0" alt="View the MathML source" title="View the MathML source" width="39" height="14" /> which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high border="0" alt="View the MathML source" title="View the MathML source" width="39" height="14" /> corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor border="0" alt="View the MathML source" title="View the MathML source" width="21" height="13" />, however, is affected by the ferrite content with border="0" alt="View the MathML source" title="View the MathML source" width="64" height="17" /> reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.
Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the border="0" alt="View the MathML source" title="View the MathML source" width="115" height="18" /> ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the border="0" alt="View the MathML source" title="View the MathML source" width="53" height="18" /> data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.
Resumo:
Pulsed laser beam was used to modify surface processing for ductile iron. The microstructures of processed specimen were observed using optical microscope (OM). Nanoindentation and micro-hardness of microstructures were measured from surface to inner of sample. The experimental results show that, modification zone is consisted of light melted zone, phase transformation hardening area and transient area. The light melt area is made up of coarse dendrite crystalline with a thickness less than 20um, phase transformation hardening area mainly of laminal or acicular martensite, retained austenite and graphite, i.e. M+A prime+ G. The cow-eye microstructure around graphite sphere always is formed in phase transformation hardening area zone, which consisting of a variety structure with the distance from the surface. So, it maybe as a obvious sign distinguishing modification zone border. Finally, the microstructures evolution of laser pulse processed ductile iron was analyzed coupling with beam energy distribution in space and laser pulse heating procession characteristics. The analysis shows that energy distribution of laser pulse has an important effect on microstructure during laser pulse modified ductile iron. Multi-scale and interlace arrangement are the important features for laser pulse modified ductile iron. Of microstructure.
Resumo:
郑哲敏文集 |
会议论文 |
冯元桢先生贺信 | |||||||
A Similarity Law for Stressing Rapidly Heated Thin-Walled Cylinders | H. S. TSIEN;C. M. CHENG; | ||||||
ANALYSIS OF PIPE VIBRATIONS WITH INTERNAL FLUID FLOW | |||||||
PROBLEMS IN HYDRO-ELASTICITY | |||||||
关于工程地震的若干问题 | 郑哲敏; | ||||||
平板在流体作用下的振动 | 郑哲敏; | ||||||
VIBRATION OF PANEL IN THE PRESENCE OF A FLUID | |||||||
悬臂梁在一侧受有液体作用时的自由振动 | 郑哲敏;马宗魁; | ||||||
爆炸成形模型律 | 郑哲敏; | ||||||
水中击波入射于平板时空化的形成及其作用 | 郑哲敏; | ||||||
球壳的变形计算和能量准则 | 郑哲敏;孙同坤;孙国芳; | ||||||
关于地下爆炸计算模型的一个建议 | 郑哲敏;解伯民; | ||||||
破甲过程初步分析及一些基础知识 | 中国科学院力学研究所二室四组; | ||||||
破甲过程初步分析及一些基础知识(续) | 中国科学院力学研究所二室四组; | ||||||
破甲机理的力学分析及简化模型(681破甲机理课题进展报告) | 郑哲敏;谈庆明; | ||||||
关于射流侵彻的几个问题 | 郑哲敏; | ||||||
聚能射流的稳定性问题 | 郑哲敏; | ||||||
连续介质力学与断裂 | 郑哲敏; | ||||||
一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布 | 虞吉林;郑哲敏; | ||||||
受压固、气两相介质一维膨胀运动 | 谈庆明;丁雁生;郑哲敏; |
页码: | [1] [2] [3] [4] |
Resumo:
An approach for fabricating large area uniform nanostructures by direct femtosecond (fs) laser ablation is presented. By the simple scanning technique with appropriate irradiation conditions, arbitrary size of uniform, complanate nano-grating, nano-particle, and nano-square structures can be produced on wide bandgap materials as well as graphite. The feature sizes of the formed nanostructures, which can be tuned in a wide range by varying the irradiation wavelength, is about 200 nm with 800 nm fs laser irradiation. The physical properties of the nano-structured surfaces are changed greatly, especially the optical property, which is demonstrated by the extraordinary enhancement of light transmission of the treated area. This technique is efficient, universal, and environmentally friendly, which exhibits great potential for applications in photoelectron devices. (C) 2008 Optical Society of America
Resumo:
The relationship between transmission area of an object imaged and the visibility of correlated imaging is investigated in a lensless system. We show that they are not in simple inverse proportion, as usually depicted. The changes of the visibility will be quite different when the transmission area is varied by different manners, which may motivate people to seek a new understanding about the influence factors of the visibility. (C) 2007 Optical Society of America
Resumo:
An atomic force microscope (AFM) assisted surface plasmons leakage radiation photolithography technique has been numerically demonstrated by using two-dimensional finite-difference time-domain (2D-FDTD) method. With the aid of a metallic AFM tip, particular characteristic of the Kretstchmann configuration to excite surface plasmons (SPs) is utilized to achieve large-area patterns with high spatial resolution and contrast, the photoresist could be exposed with low power laser due to the remarkable local field enhancement at the metal/dielectric interface and the resonant localized SPs modes near the tip. Good tolerance on the film thickness and incident angle has been obtained, which provides a good practicability for experiments. This photolithography technique proposed here can realize large-area, high-resolution, high-contrast, nondestructive, arbitrary-structure fabrication of nanoscale devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A master-oscillator fiber power amplifier (MOPA) system with a 4-m-long Yb3+-doped homemade large mode area (LMA) double-clad fiber is reported. The system emits up to 133.8 W of amplified radiation at a wavelength of 1064 nm and a repetition rate of 100 kHz, limited only by the available pump power. Peak power of 300 kW at 20 kHz with a pulse duration of 15 ns is obtained. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A master-oscillator fiber power amplifier (MOPA) system with a 4-m-long Yb3+-doped homemade large mode area (LMA) double-clad fiber is reported. The system emits up to 133.8 W of amplified radiation at a wavelength of 1064 nm and a repetition rate of 100 kHz, limited only by the available pump power. Peak power of 300 kW at 20 kHz with a pulse duration of 15 ns is obtained. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
To get high output power with good beam quality, a tapered section is introduced to large-mode-area (LMA) Yb-doped fiber laser. Output characteristics of the fiber laser without tapered section and with tapered section are compared experimentally. When the launched pump power is 119.1 W, 77.9 W with M-2 3.08 and 56.4 W with M-2 1.14 can be obtained, respectively. The corresponding slope efficiencies are 71.8% and 54.1%, respectively. Although output power of the tapered fiber laser has 30.6% penalty, brightness of it is as much as 5.28 times of the fiber laser without tapered section. Moreover, spectra of them are measured. It is found that tapered section makes lasing wavelength of the fiber laser shorter. (c) 2007 Elsevier B.V. All rights reserved.