217 resultados para acrylonitrile butadiene rubber

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raw polymer and compound of hydrogenated acrylonitrile butadiene rubber (HNBR) were subjected to gamma-ray irradiation. Crosslinking was found to be the main chemical reaction induced by irradiation; the ratio of chain scission to crosslinking as well as

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled cyclization of styrene-butadiene rubber (SBR) was achieved with the aid of cationic catalyst system based on diethylaluminium chloride (AIEt(2)Cl) and benzyl chloride (C6H5CH2Cl) and by working in xylene solution at high temperature (T > 100 degreesC). The main parameters of the cyclization process were investigated. Elastomers with low intrinsic viscosity, ready solubility, free gel were obtained. The products were characterized with IR H-1-NMR, DSC, GPC. The polycyclic structure was determined. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(acrylonitrile-butadiene-styrene), polycarbonate (PC), and two types of antioxidants have been blended by an extruder twin screw. Notched Izod impact strength, tensile property, and melting flow index (MFI) were measured for the blends including diffe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycarbonate (PC) and poly(acrylonitrile-butadiene-styrene) (ABS) was co-extruded at different weight ratios by a single screw extruder. In order to obtain a finer blend, two times extrusion was carried out. In this case, a ''network'' structure with two-continuous phases was observed for the blends with two compositions of PC/ABS, being 80/20 and 70/30. It is found that the blends with these two compositions just have maximum values on the curves of notched Izod impact strength, flexural modulus and flexural strength vs. composition, respectively. This was never observed in previous publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary CNBR/PP-g-GMA and ternary CNBR/PP/PP-g-GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP-g-GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP-g-GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP-g-GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP-g-GMA, T, of PP-g-GMA in CNBR/PP-g-GMA blends increased about 10degreesC. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP-g-GMA in CNBR/PP-g-GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP-g-GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP-g-GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP-g-GMA blends were greatly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of acrylonitrile-butadiene-styrene (ABS) core-shell modifier with different grafting degree, acrylonitrile (AN) content, and core-shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong inter-action between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core-shell ratio of ABS copolymers has important effect on PBT/ABS blends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nylon 6/poly(acrylonitrile-butadiene-styrene)(ABS) blends were prepared in the molten state by a twin-screw extruder. Maleic anhydride-grafted polypropylene (MAP) and solid epoxy resin (bisphenol type-A) were used as compatibilizers for these blends. The effects of compatibilizer addition to the blends were studied via tensile, torque, impact properties and morphology tests. The results showed that the additions of epoxy and MA copolymer to nylon 6/ABS blends enhanced the compatibility between nylon 6 and ABS, and this lead to improvement of mechanical properties of their blends and in a size decrease of the ABS domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two sets of graft copolymers were prepared by grafting glycidyl methacrylate (GMA) or ally] (3-isocyanate-4-tolyl) carbamate (TAI) onto ethylene/propylene/diene terpolymer (EPDM) in an internal mixer. These graft copolymers were used as the compatibilizer to prepare the thermoplastic elastomers (TPEs) containing 50 wt%, of poly(butylene terephthalate), PBT, 30 wt% of compatibilizer, and 20 wt% of nitrile-butadiene rubber, NBR. The indirect, two-step mixer process was chosen for dynamic curing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文用动态粘弹谱仪,扫描电子显微镜(SEM)、冲击试验机和其它辅助设备研究了软聚氯乙烯(soften polyvinylchloride)和改性丙烯腈-丁二烯-苯乙烯三元共聚物(Acrylonitrile-Butadiene-Styrene Terpolymer)共混体系的用容性、形态结构和力学性能。通过对不同配比的SPVC/ABS相态结构与力学性能关系的分析,阐明了SPVC/ABS共混体系属于界面相容体系,在两相之间存在有一定厚度的界面层。轻微的相容性有利于共混体系抗冲击性能的提高。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In preparing copolymer of the same composition by batch process in two - component copolymerization it is necessary to keep the monomer ratio constant by replenishing the fraction of the more reactive monomer. In this paper a calculation method for monomer feeding is derived, which iscapable of controlling the composition of cooligomer during the course of reaction. Some cooligomers of acrylonitrile and butadiene with relatively the same compositions have been prepared using the replenishing method. The method would be useful for other two - component copolymerization ion process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The morphologies and mechanical properties of epoxy resins toughened by hydroxyl-terminated butadiene-acrylonitrile copolymer (HTBN) and cured with hexahydrophthalic anhydride were studied, The results show that the level of HTBN in epoxy resin, content of acrylonitrile in HTBN and curing temperature influence the morphology and then influence the mechanical properties of cured epoxy resin.