153 resultados para WAVELENGTH DISCRIMINATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel fiber Bragg grating (FBG) sensor system based on an interrogating technique by two parallel matched gratings was designed and theoretically discussed. With an interrogation grating playing the role of temperature compensation grating simultaneously, the wavelength drifts induced by temperature and strain were discriminated. Additionally, the expressions of temperature and strain were deduced for our solution, and dual-value problem and cross sensitivity were solved synchronously through data processing. The influence of the FBG's parameters on the dynamic range and precision was discussed. Besides, the change of environment temperature cannot influence the dynamic range of the sensor system through temperature tuning. The system proposed in this paper will be of great significance to accelerate the real engineering applications of FBG sensing techniques. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization.
Resumo:
The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.
Resumo:
We propose an efficient scheme to build an arbitrary multipartite Greenberger-Horne-Zeilinger state and discriminate all the universal Greenberger-Horne-Zeilinger states using parity measurement based on dipole-induced transparency in a cavity-waveguide system. A prominent advantage is that initial entangled states remain after nondetective identification and they can be used for successive tasks. We analyze the performance and possible errors of the required single-qubit rotations and emphasize that the scheme is reliable and can satisfy the current experimental technology.
Resumo:
We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Resumo:
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We describe the design, fabrication, and excellent performance of an optimized deep-etched high-density fused-silica transmission grating for use in dense wavelength division multiplexing (DWDM) systems. The fabricated optimized transmission grating exhibits an efficiency of 87.1% at a wavelength of 1550 nm. Inductively coupled plasma-etching technology was used to fabricate the grating. The deep-etched high-density fused-silica transmission grating is suitable for use in a DWDM system because of its high efficiency, low polarization-dependent loss, parallel demultiplexing, and stable optical performance. The fabricated deep-etched high-density fused-silica transmission gratings should play an important role in DWDM systems. (c) 2006 Optical Society of America.
Resumo:
We describe high-efficiency diffraction gratings fabricated in fused silica at the wavelength of 632.8 nm by rigorous coupled-wave analysis (RCWA). High-density holographic gratings, if the groove density falls within the range of 1575-1630 lines/mm and the groove depth within the range of 1.1-1.3 microns, can realize high diffraction efficiencies at the wavelength of 632.8 nm, e.g., the first Bragg diffraction efficiency can theoretically achieve more than 93% both in TE- and TM-polarized incidences, which greatly reduces the polarization-dependent losses. Note that with different groove profiles further optimized, the maximum efficiency of more than 99.69% can be achieved for TM-polarized incidence, or 97.81% for TE-polarized incidence.
Resumo:
Three wavelengths of red, green and blue of recording beams are systemically tested for the UV-assistant recording and optical fixing of holograms in a strongly oxidized Ce:Cu:LiNbO3 crystal. Three different photorefractive phenomena are observed. It is shown that the green beams will optimally generate a critical strong nonvolatile hologram with quick sensitivity and the optimal switching technique could be jointly used to obtain a nearly 100% high diffraction. Theoretical verification is given, and a prescription on the doping densities and on the oxidation/reduction states of the material to match a defined recording wavelength for high diffraction is suggested.
Resumo:
Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are achieved in the 5 mol % MgO-doped congruent LiNbO3 crystals. The reduction proportion increases exponentially with decreasing irradiation wavelength and decreases exponentially with increasing irradiation wavelength. At one given wavelength, the reduction proportion increases exponentially with increasing irradiation intensity. An assumption is proposed that the reduction of nucleation field is directly related to the defect structure of crystal lattice generated by the complex coaction of incident irradiation field and external electric field. (c) 2007 American Institute of Physics.