168 resultados para UV-spectrohotometry

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonvolatile recording scheme is proposed using LiNbO3:Ce:Cu crystals and modulated UV light to record gratings simultaneously in two centres and using red light to bleach the grating in the shallow centre to realize persistent photorefractive holographic storage. Compared with the normal UV-sensitized nonvolatile holographic system, the amplitude of refractive-index changes is greatly increased and the recording sensitivity is significantly enhanced by recording with UV light in the LiNbO3:Ce:Cu crystals. Based on jointly solving the two-centre material equations and the coupled-wave equations, temporal evolutions of the photorefractive grating and the diffraction effciency are effectively described and numerically analysed. Roles of doping levels and recording-beam intensity are discussed in detail. Theoretical results confirm and predict experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulated UV light is used to increase the sensitivity of the two-centre holographic recording. Inherent mechanisms of nonvolatile holographic recording in oxidized and reduced crystals are numerically analysed based on solving the two-centre material equations modilied for UV-Iight recording. Experiments verification is performed with an oxidized crystal and a reduced crystal, and the role of UV intensity on the sensitivity is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report spectral properties and thermal stability of Nd3+-doped InF3-based heavy-metal fluoride glasses. Fluoroindate glasses in the chemical compositions (in mol%) of (38-x)InF3-16BaF(2)-20ZnF(2)-20SrF(2)-3GdF(3)-1GaF(3-)2NaF-xNdF(3) (x = 0.1, 0.5, 1, 2, 3) have been prepared under a controlled atmosphere in a dry box. Strong UVblue upconversion emission from a green excitation wavelength has been observed and the involved mechanisms have been explained. Near-infrared emission occurs simultaneously upon excitation of the UV-blue upconversion emissions with a cw Ar(+)laser. The upconversion spectra have revealed four dominant emissions at 354, 380, 412 and 449 nm, which belong to the transitions of D-4(3/2) -> I-4(9/2), D-4(3/2) -> I-4(11/2) and P-2(3/2) -> I-4(9/2), D-4(3/2) -> I-4(13/2) and P-2(3/2) -> I-4(11/2), D-4(3/2) -> I-4(15/2) and P-2(3/2) -> I-4(13/2), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films prepared by the thermal oxidation of the ZnS films through thermal evaporation are reported. The as-deposited ZnS films have transformed to ZnO films completely at 400 degrees C. The 400-700 degrees C annealed films with a preferential c-axis (002) orientation have a hexagonal wurtzite structure. The band gap of ZnO films shifts towards longer wavelength with the increase of the annealing temperature. The relationship between the band gap energy of ZnO films and the grain size is discussed. The shift of the band gap energy can be ascribed to the quantum confinement effect in nanocrystal ZnO films. The photoluminescence spectra of ZnO films show a dominant ultraviolet emission and no deep level or trap state defect emission in the green region. It confirms the absence of interstitial zinc or oxygen vacancies in ZnO films. These results indicate that ZnO film prepared by this simple thermal oxidation method is a promising candidate for optoelectronic devices and UV laser. (c) 2005 Elsevier BN. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band-edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06---3.15 eV. From optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: