63 resultados para UCPR r 229(1)(b)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
目的:为了探讨植物多糖硫酸酯(’&&()与)*+%$ 结合后,能否诱导,-./+#0 的)*+%$ 暴露出中和抗体的表 位,用它作为灭活疫苗以便诱导产生中和抗体。方法:用’&&( 结合的灭活,-./+#0 作为免疫原,与佐剂混和后,免疫 0(102 3 小鼠,制备出免疫血浆。用41-5( 检测血浆内抗,-./+ 特异性-)6 抗体的滴度,用改良的活细胞染色法中和试验检测 免疫血浆的抗,-./+#0 的中和活性。结果:从与’&&( 结合的,-./+#0 免疫组的动物获得的免疫血浆内抗,-./+ 抗体的滴 度(7 组:+8 # 9 +$" ;: 组:+8 # 9 +$" )比未结合’&&( 的,-./+#0 免疫组(;8 < 9 +$# )高,雌性小鼠的免疫血浆的特异性抗体滴 度比雄性的高& 倍。所有免疫组获得的免疫血浆均没有抗,-./+ 中和活性。结论:’&&( 与)*+%$ 相互作用不能诱导暴露出 )*+%$ 的中和抗体表位,但’&&( 可以增强机体免疫原的抗体反应强度,提示它可以作为免疫增强剂用于疫苗研究。
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
从活性污泥中分离得到1株对偶氮染料酸性红B具有明显脱色效果的酵母菌株YR-1,鉴定为红酵母Rhodotorulasp。YR-1对酸性红B脱色机制属于降解脱色,能在30h内使质量浓度50mg·L-1的酸性红B溶液脱色率达到99%以上。研究了各种因素对酸性红B脱色效果的影响,最佳脱色条件为:初始pH为5.0、接种质量分数5%、温度30℃;最佳碳源是葡萄糖,其次是蔗糖;最佳氮源是酵母膏或蛋白胨。在替换分批脱色试验和连续补料脱色试验中,脱色率一直保持在75%以上,显示YR-1在上述脱色体系中均具有良好适应性。
Resumo:
The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture.
Resumo:
本工作结合水轮机涂层材料的研制,针对端羟基丁二烯~丙烯腈的共低聚反应,研究了共聚物组成的控制。根据自由基共聚反应理论,提出了一个控制共聚物组成的新计算方法。并根据这种计算方法,合成了具有均匀组成的丁腈羟液体聚合物。用Skeist公式的积分形式~((54)),对所研究的体系,进行了计算。计算结果表明:不补加单体时,丁二烯~两烯腈的共聚反应过程中,单体组成及共聚物组成的变化是显著的。为了合成组成比较均匀的共聚物,必须在反应过程中,补加消耗较快的单体——丙烯腈。根据共聚方程式和反应体系及共聚物中单体浓度的相互关系,推导出丙烯腈的补加量C_A的表示公式为:C_A = (B)_o(R-F)(1-(B)/((B)_o))式中,(B)_o是单体B的起始浓度,R为聚物中单体浓度比,F为单体浓度比。又根据共聚反应速度方程式~((31))及引发剂热分解速度公式,推导出(B)/((B)_o)与反应时间t的函数关系式为:(B)/((B)_o) = exp[K(f(I)_o/k_d)~(1/2)(l~(-k_dt/2)-1)]式中(I)_o为引发剂起始浓度,(B)为反应过程中单体B的浓度,k_d为引发剂分解速度常数,f为引发效率,K为常数。最后得到C_A的表示式为:C_A = (B)_o(R-F){1-exp[K(f(I)_o/k_d)~(1/2)(e~(k_dt/2)-1)]}按上式计算出的C_A的量,在反应过程中补加丙烯腈,这样合成的丁腈羟,实验证明,其组成是均匀的。根据Goldfinger公式~((35)),由测得的竞聚率和单体克分子比,计算了丁腈羟的序列分布。计算的结果说明:所合成的丁腈羟不仅组成是比较均匀的,其序列分布也是比较均匀的。这有利于提高丁腈羟作为水轮机涂层材料的耐磨、耐汽蚀及粘结性能。
Resumo:
目的:研究从药用植物金佛山雪胆分离的雪胆素A和雪胆素B两个三萜类化合物的体外抗HIV活性.方法:应用合胞体抑制实验、p24抗原产生的抑制实验、慢性感染细胞和正常细胞间的细胞融合抑制实验等技术检测化合物的体外抗HIV-l活性;利用HIV-l逆转录酶、蛋白酶抑制实验,NCp7锌离子逐出实验探讨化合物的作用机制.结果:雪胆素A和雪胆素B在体外有较好的抑制HIV-l活性,其活性主要表现为:(1)抑制HIV-l诱导合胞体形成,EC50值分别为3.09 μg·mL-1和2.53μg·mL-1;(2)抑制HIV- 急性感染的C8106细胞p24抗原产生,EC50值分别为3.97μg·mL-1和18.90μg·mL-1;(3)抑制HIV-1 慢性感染H9与正常C8166细胞间融合,EC50分别为1.76μg·mL-1和11.95μg·mL-1.雪胆素A和雪胆素B对HIV-l逆转录酶、蛋白酶、NCp7锌离子逐出均没有抑制作用.雪胆素A对HIV-1整合酶有微弱的结合活性,而雪胆素B对HIV-1整合酶没有结合活性.在共培养实验中,雪胆素A和雪胆素B预处理C8166细胞组比未经预处理细胞组能够更有效的抑制HIV-l活性.结论:化合物雪胆素A和雪胆素B体外有较好的抗HIV-1活性,可能主要作用于HIV-1病毒进入细胞阶段.
Resumo:
目的:探讨HIV-1感染是否影响细胞中UNG2的表达.方法:采用四步法SYBR green Ⅰ实时定量RT-PCR,对HIV-1感染者的T和B淋巴细胞,以及HIV-1感染的C8166细胞核内UNG2 mRNA的表达进行测定.结果:UNG2 mRNA的表达在HIV-1感染者的T细胞和HIV-1感染的C8166细胞中被明显上调,分别是对照的8.76倍和8.14倍,而在HIV-1感染者的B细胞中却没有被上调.结论:HIV-1感染导致的UNG2表达上调,可能通过减少TCR的多样性削弱Th的功能,另一方面可能有利于病毒对UNG2的包装.
Resumo:
银额果蝇昆明群体有丝分裂中期核型中存在B染色体, 出现频率为69.1%在已 研究过的来自各个地区的银额果蝇中, 昆明群体的B染色体频率最高。B染色体 数目为1—6条。该群体内单雌系间的B染色体数目不同, 个体间和细胞间的B染色 体数目也不同。在核型中, B染色体最小, 形态稳定, 点状, C-带和G-带呈阳性 。 图版1图2表1参12
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Resumo:
人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.
Resumo:
A new method for the preparation of polyalkyl and polyarenefullerene derivatives C-60(RH)(n)(R=Bu,n=1-3; R=Ph,n=1-10) by the reaction of C-60 with organotin hydride in toluene is described. Another series of products of stannanes R(a)Sn(b)H(c) (R=Bu, a=3-8, b=1-4, c=0-3 R=Ph, a=3-11, b=1-5, c=0-4) were also obtained, which shows that C-60 can catalyze polymerization of organic-tin. These products were determined by mass and infrared spectrometry. And the possible reaction mechanisms are discussed.
Resumo:
The crystal structure of the title compound has been determined from single crystal X-ray diffraction. The complex crystallizes in the triclinic space group P1 with Z=2. Lattice parameters are: a = 0.7296(1), b = 1.0110(3), c = 1.2814(4) nm; alpha = 90.84(2), beta = 101.17(2), gamma = 92.52(2)-degrees. Intensity data were collected on a Nicolet R3M/E four-circle diffractometer using MoK alpha (lambda = 0.071073 nm) radiation. The structure was solved by Patterson and Fourier techniques and refined by least-squares techniques to R = 0.065. The structure of the complex consists of tetrahedral ZnCl42- anions which form a two-dimensional sheets. Tetrahedral ZnCl42- anions are sandwiched between two hydrocarbon layers which consist of [NH3(CH2)10NH3]2+ cations. Each [NH3(CH2)10NH3]2+ group is in a gauche bond between C atoms near NH3 polar heads.
Resumo:
[NH3(CH2)10NH3][ZnCl4], M(r) = 381.51, triclinic, P1BAR, a = 7.296 (1), b = 10.110 (3), c = 12.814 (4) angstrom, alpha = 90.84 (2), beta = 101.17 (2), gamma = 92.52 (2)-degrees, V = 926.13 angstrom 3, Z = 2, D(x) = 1.37 Mg m-3, lambda(Mo K-alpha) = 0.71073 angstrom, mu = 1.925 mm-1, F(000) = 396, T = 298 K, final R = 0.070 for 1237 unique reflections [I > 3-sigma(I)]. The structure is characterized by layers of inorganic ions sandwiched between layers formed by the paraffinic chains.