62 resultados para Two Stage Process
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30 degrees C (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthocyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was decreased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influenced by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg.g-fresh cell(-1) was obtained on day 9 by a temperature-shift from 30 degrees C, after 3-d culture, to 15 degrees C. The highest anthocyanin yield of 318 mg.L-1 on day 12 was achieved when the temperature was shifted from 30 degrees C, after 5-d culture, to 20 degrees C. For a global optimization of both the yield and productivity, the optimum anthocyanin yield and productivity of 272 mg.L-1 and 30.2 mg.L-1.d(-1) on day 9 were achieved by a two-stage culture with a temperature-shift from 30 degrees C after 3 d to 20 degrees C.
Resumo:
We have developed a two-stage growth one-step process for cultivation of Haematococcus using a self-designed system that mimics an open pond in the natural environment. The characteristics of this process are green vegetative cell growth and cysts transformation and pigment accumulation that proceed spontaneously and successively in one open photobioreactor. Four strains of Haematococcus (H. pluvialis 26; H. pluvialis 30; H. pluvialis 34; H. pluvialis WZ) were cultured in this imitation system for a duration of 12 days. The changes in cell density and medium pH were closely monitored, and the astaxanthin content and yield of the four Haematococcus strains were measured at the end of 12 days of cultivation. Two of the strains, H. pluvialis 26 and H. pluvialis WZ, were selected as strains suitable for mass culture, resulting in the astaxanthin yield of 51.06 and 40.25 mg L-1 which are equivalent to 2.79 and 2.50% of their dry biomass respectively. Based on the laboratory work, 6 batch cultures of H. pluvialis WZ were conducted successfully to produce astaxanthin in two 100 m(2) open race-way pond by two-stage growth one-step process. The astaxanthin content ranged from 1.61 to 2.48 g 100 g(-1) dry wt., with average astaxanthin content of 2.10 g 100 g(-1) dry wt. Compared with the one-stage production of astaxanthin based on continuous culture, the superiority of our process is that it can accumulate much more astaxanthin in red cysts. Compared with two-stage production of astaxanthin, the advantage of our process is that it does not need to divide the production process into two parts using two bioreactors. The presented work demonstrates the feasibility for producing astaxanthin from Haematococcus using a two-stage growth one-step process in open pond, culture systems that have been successfully used for Spirulina and Chlorella mass culture. The future of Haematococcus astaxanthin production has been also discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have developed a two-stage Ti:sapphire amplifier system which can produce 17-TW/23-fs pulses at a repetition rate 10 MHz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all-reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.
Resumo:
Chinese Academy of Sciences (ISCAS)
Resumo:
A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Cubic boron nitride (c-BN) films were prepared by ion beam assisted deposition (IBAD) technique, and the stresses were primary estimated by measuring the frequency shifts in the infrared-absorption peaks of c-BN samples. To test the possible effects of other factors, dependencies of the c-BN transversal optical mode position on film thickness and c-BN content were investigated. Several methods for reducing the stress of c-BN films including annealing, high temperature deposition, two-stage process, and the addition of a small amount of Si were studied, in which the c-BN films with similar thickness and cubic phase content were used to evaluate the effects of the various stress relief methods. It was shown that all the methods can reduce the stress in c-BN films to various extents. Especially, the incorporation of a small amount of Si (2.3 at.%) can result in a remarkable stress relief from 8.4 to similar to 3.6 GPa whereas the c-BN content is nearly unaffected, although a slight degradation of the c-BN crystallinity is observed. The stress can be further reduced down below I GPa by combination of the addition of Si with the two-stage deposition process. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In order to obtain an overall and systematic understanding of the performance of a two-stage light gas gun (TLGG), a numerical code to simulate the process occurring in a gun shot is advanced based on the quasi-one-dimensional unsteady equations of motion with the real gas effect,;friction and heat transfer taken into account in a characteristic formulation for both driver and propellant gas. Comparisons of projectile velocities and projectile pressures along the barrel with experimental results from JET (Joint European Tons) and with computational data got by the Lagrangian method indicate that this code can provide results with good accuracy over a wide range of gun geometry and loading conditions.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
The magnitude evolution of ettringite and gypsum in hydrated Portland cement mortars due to sulfate attack was detected by X-ray powder diffraction. The influences of sulfate concentration and water-to-cement ratio on the evolution of ettringite and gypsum were investigated. Experimental results show that the magnitude of ettringite formation in sodium sulfate solution follows a three-stage process, namely, the 'penetration period', 'enhance period of strength', and 'macro-crack period'. The cracking of concrete materials is mainly attributed to the effect of ettringite. The gypsum formations occurred in two stages, the 'latent period' and the 'accelerated period'. The gypsum formation including ettringite formation was relative to the linear expansion of mortars to some extend. Both water-to-cement ratio and sulfate concentration play important roles in the evolution of ettringite and gypsum. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.
Resumo:
Mass transfer resistance in the production of high impact polypropylene (hiPP) produced by a two-stage slurry/gas polymerization was investigated by field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. It is found that the formation of ethylene-propylene copolymer (EPR) phases in polypropylene (iPP) particle produced in the first stage slurry polymerization exhibits a developing process from exterior to interior