39 resultados para Transyugular intrahepatic postosystemic shunt (TIPS)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new area function is introduced and applied to a Berkovich tip in order to characterize the contact projected area between an indenter and indented material. The function can be related directly to tip-rounding, thereby having obviously physical meaning. Nanoindentation experiments are performed on a commercial Nano Indenter XPsystem. The other two area functions introduced by Oliver and Pharr and by Thurn and Cook respectively are involved in this paper for comparison. By comparison from experimental results among different area functions, the indenter tip described by the proposed area function here is very close to the experimental indenter.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
中国科学院近代物理研究所正在进行等离子体直接注入方案的研究,以便为重离子物理研究提供稳定可靠的高流强束流。由于工作频率较低,用于等离子体直接注入方案的RFQ腔体采用了适合于低频的四杆型结构。在完成束流动力学设计的前提下,研究了RFQ腔体支撑臂的各参数对并联阻抗的影响。由于突出电极之间存在着一定大小的电容,会对腔体的性能产生影响,为使腔体达到最优化的设计,进行了突出电极对并联阻抗及场平整性的影响的研究,并给出了突出电极的取值范围。
Resumo:
A high current RFQ (radio frequency quadrupole) is being studied at the Institute of Modern Physics, CAS for the direct plasma injection scheme. Shunt impedance is air important parameter when designing a 4-rod RFQ cavity, it reflects the RF efficiency of the cavity, and has a direct influence on the cost of the structure. Voltage distribution of a RFQ cavity has an effect on beam transmission, and particles would be lost if the actual voltage distribution is not as what, it should be. The influence of cell length, stern thickness and height on Shunt impedance and voltage distribution have been studied, in particular the effect of projecting electrodes has been investigated in detail.
Resumo:
A novel method for fabrication of nanometer-sized electrodes and tips suitable for scanning electrochemical microscopy (SECM) is reported. A fine etched Pt wire is coated with polyimide, which was produced by polymerization on the Pt surface initiated by heat. This method can prepare electrodes with effective radii varying from a few to hundreds of nanometers. Scanning electron microscopy, cyclic voltammetry, and SECM were used to characterize these electrodes. Well-defined steady-state voltammograms could be obtained in aqueous or in 1,2-dichloroethane solutions. Ibis method produced the nanoelectrodes with exposed Pit on the apex, and they can also be employed as the nanotips for SECM investigations. Different sizes of Pt nanotips made by this method were employed to evaluate the kinetics of the redox reaction of Ru(NH3)6(3+) on the surface of a large Pt electrode by SECM, and the standard rate constant kappa (o) of this system was calculated from the best fit of the SECM approach curve. This result is similar to the values obtained by analysis of the obtained voltammetric data.
Resumo:
We report a new technique for preparing tips for electrochemical scanning tunneling microscopy (ECSTM) with particular consideration of its simplicity and reproducibility. In preparing scanning tunneling microscopy (STM) tips by electrochemical etching, w
Resumo:
We have presented two simple methods of ''unfixed-position shield'' and ''pulling out'' for making sharp STM Pt-Ir tips with low aspect ratio by electrochemical etching in KCN/NaOH aqueous solution and ECSTM tips coated with paraffin. By limiting the elec
Resumo:
It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.
Resumo:
The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.
Resumo:
The singular nature of the dynamic stress fields around an interface crack located between two dissimilar isotropic linearly viscoelastic bodies is studied. A harmonic load is imposed on the surfaces of the interface crack. The dynamic stress fields around the crack are obtained by solving a set of simultaneous singular integral equations in terms of the normal and tangent crack dislocation densities. The singularity of the dynamic stress fields near the crack tips is embodied in the fundamental solutions of the singular integral equations. The investigation of the fundamental solutions indicates that the singularity and oscillation indices of the stress fields are both dependent upon the material constants and the frequency of the harmonic load. This observation is different from the well-known -1/2 oscillating singularity for elastic bi-materials. The explanation for the differences between viscoelastic and elastic bi-materials can be given by the additional viscosity mismatch in the case of viscoelastic bi-materials. As an example, the standard linear solid model of a viscoelastic material is used. The effects of the frequency and the material constants (short-term modulus, long-term modulus and relaxation time) on the singularity and the oscillation indices are studied numerically.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
Resumo:
Stress and strain distributions and crack opening displacement characteristics of short cracks have been studied in single edge notch bend and centre cracked panel specimens using elastic–plastic finite element analyses incorporating both a non strain hardening and a power law hardening behaviour. J contour integral solutions to describe stress strain conditions at crack tips for short cracks differ from those for long cracks. The analyses show that (i) short cracks can propagate at stress levels lower than those required for long cracks and (ii) a two-parameter description of crack tip fields is necessary for crack propagation.
Resumo:
科技论文写作对总结科学研究的创新发现是至关重要的。本文作者对如何撰写或写好科技论文,从论文写作的基本元素及常见问题等方面言简意赅地提出了很有意义的见解。
Resumo:
介绍了制作低密度闪耀光栅的过程,在制作时,对传统的制作过程进行了改进,有效提高了制作质量。以40μm闪耀光栅为例介绍了制作的过程,得到了良好的光栅表面形貌,并且闪耀级次的衍射效率达到了70%以上。相比传统的制作方法,效率提高了5%~10%。对比了理论上的衍射效率,分析了实验误差,发现把存在对准误差的光栅进行处理将会有效地提高其衍射效率,为进一步提高闪耀光栅的衍射效率提供了依据。