33 resultados para Training stages
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
River training walls have been built at scores of locations along the NSW coast and their impacts on shoreline change are still not fully understood. In this study, the Brunswick River entrance and adjacent beaches are selected for examination of the impact of the construction of major training walls. Thirteen sets of aerial photographs taken between 1947 and 1994 are used in a CIS approach to accurately determine tire shoreline Position, beach contours and sand volumes, and their changes in both time and space, and then to assess the contribution of both tire structures and natural hydrodynamic conditions to large scale (years-decades and kilometres) beach changes. The impact of the training walls can be divided into four stages: natural conditions prior to their construction (pre 1959), major downdrift erosion and updrift accretion during and. following the construction of the walls in 1959 similar to 1962 and 1966. diminishing impact of the walls between 1966 and 1987, and finally no apparent impact between 1987 similar to 1994. The impact extends horizontally about 8 km updrift and 17 km downdrift, and temporally up to 25 years..
Resumo:
In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.
Resumo:
A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America