14 resultados para Teacher turnover
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Photoluminescence of ZnSe, Zn0.84Mn0.16Se alloy, and ZnSe/Zn0.84Mn0.16Se superlattice (SL) have been measured in the temperature range from 10 to 300 K. It is found that the band gap of the ZnSe was smaller than that of the Zn0.84Mn0.16Se alloy at 10 K, but larger than that of the alloy at 300 K. Then the well and barrier layers of the ZnSe/Zn0.84Mn0.16Se SL would be expected to turn over at about 180 K. This type of turn over was observed in the SL sample. The turn over took place at 80 K, somewhat lower than the expected temperature. A calculation including the strain in the ZnSe/Zn0.84Mn0.16Se SL indicates that the heavy-hole bands begin crossing at 75 K, which agrees well with experimental results. [S0163-1829(99)13127-8].
Resumo:
Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.