99 resultados para THERMAL DEFORMATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
Thermally induced recovery of nanoindents in a CUAINi single crystal shape memory alloy was studied by nanoindentation in conjunction with a heating stage. Nanoindents formed by a Berkovich indenter at room temperature were heated to 40, 70 and 100 degrees C. Partial recovery was observed for the nanoindents. The recovery ratio depended on the heating temperature. Indentation of CuAlNi can induce inelastic deformation via dislocation motion and a stress-induced matensitic transformation. The percentages of dislocation-induced plastic strain would affect the thermal deformation of CuAlNi, because the induced dislocations could stabilize stress-induced martensite plates even when the temperature above austenite finish temperature, A(f). When the applied indentation load is low (less than 10,000 mu N), the shape recovery strain is predominant, compared with the dislocation-induced plastic strain. Therefore, the degree of indent recovery in the depth direction, delta(D), is high (about 0.7-0.8 at 100 degrees C).
Resumo:
在星间激光通信中,涉及对大口径衍射极限激光波面的检测,为保证测量精度,必须严格控制波面十涉仪镜子的自重和温度变形。采用有限元方法对大型干涉仪镜子在不同支承方式下的表面变形进行了分析,结果表明,接触角为180°的钢带支承是较好的支承方式,反射镜表面变形峰-谷(P-V)值仅为1.35nm,均方根(RMS)值为0.363nm根据这一结论,设计了一个同定支承点与浮动支承相结合的超静定钢带支承结构。在该结构下,分析了镜子轴向、径向、周向的温度梯度效应,分析数据表明,镜子的热弹性变形远大于自重变形,建议采取一定的温控
Resumo:
为提高表面热透镜薄膜吸收测量仪的灵敏度,在表面热透镜衍射理论基础上,通过数值模拟给出了探测激光腰斑半径、探测激光腰斑到样品表面距离、样品到探测光纤端面距离等仪器参数的优化方法.经优化调整后该仪器能达到优于0.1ppm量级的薄膜吸收率测量灵敏度.
Resumo:
An InGaA1As multiquantum well (MQW) has been successfully overgrown on the absorptive InGaAsP corrugation for fabricating the 1.3 mu m gain coupled distributed feedback (DFB) lasers. The absorptive InGaAsP corrugation was efficaciously preserved during the overgrowth of the InGaA1As MQW active region. The absorptive InGaAsP corrugation has a relatively high intensity around the PL peak wavelength in comparison with that of the InGaA1As MQW. The fabricated DFB laser exhibited a side mode suppression ratio of 40 dB together with a high single-mode yield of 90%.
Resumo:
Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.
Resumo:
In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mmx42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns.The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 mu m. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Resumo:
The dynamic micro-deformation of the specimen under laser point source is measured using a laser beam reflex amplifier system and numerically simulated by Msc.Marc software. Compared with experimental result and calculated result, the final deformation direction of the specimen depends on the result of the thermal strain and the phase transformation strain cooperation, away from the laser beam or towards the laser beam, the final deformation angle depends on temperature gradient in the thickness direction and the geometry constraint of the specimen. The conclusion lays the foundation for further research on the mechanism of laser bending. At the same time, it is proposed that the model of calculation based on classical Fourier heat transfer theory cannot be enough to simulate the dynamic micro-deformation of the specimen under laser point source, the model of calculation should be modified in the future.
Resumo:
介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...
Resumo:
A new failure mode is observed in circular brass foils induced by laser beam. The new failure is based on the following experimental facts : (1) the peripheries of the circular brass foils are fixed and the surfaces of the foils are radiated by laser beam ; (2) the laser beam used is considered to be non-Gaussian spatially, actually an approximately uniform distribution limited in a certain size spot ; (3) the pulse on time of laser beam should be 250 μs, i.e. so called long duration pulse laser. The failure process consists of three stages ; i.e. thermal bulging, localized shear deformation and perforation by plugging. The word reverse in reverse bulging and plugging mode means that bulging and plugging occur in the direction of incident laser beam. To study the newly-discovered type of failure quantitatively, analytical solutions for the axisymmetric temperature field and deflection curve are derived. The calculated results show that the newly discovered failure mode is attributed to the spatial structure effect of laser beam indeed.
Resumo:
An aromatic polyimide and its mixture with randomly distributed carbon nanotubes (NTs) are simulated by using molecular dynamics, repeated energy minimization and cooling processes. The glass transition temperatures are identified through volume-temperature curves. Stress-strain curves, Young's moduli, densities and Poisson ratios are computed at different temperatures. It is demonstrated that the carbon NT reduces the softening effects of temperature on mechanical properties and increases the ability to resist deformation.
Resumo:
A new kind of failure mode is observed in circular brass foils in which their peripheries are fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. To study the failure mode, we investigate the non-linear response of heated, non-homogeneous circular plates. Based on the large deflection equations of Berger [J. Appl. Mech. 22 (3), 465-472 (1965)], Ohnabe and Mizuguchi [Int. J. Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of Bhimaraddi and Stevens [J. Appl. Mech. 51 (1), 195-198 (1984)], we have derived new coupled governing equations of shear deformation and deflection. The new equations are solved, for the plate with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear deformation distribution are in good agreement with the experimental observation.
Resumo:
This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly, the effects of thermal softening and free volume creation on shear instability are discussed. It is known that thermal softening governs thermal shear banding, hence it is essentially energy related. However, compound free volume creation is the key factor to the other instability, though void-induced softening seems to be the counterpart of thermal softening. So, the driving force for shear instability owing to free volume creation is very different from the thermally assisted one. In particular, long wave perturbations are always unstable owing to compound free volume creation. Therefore, the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also, the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally, the mature shear band width is governed by the corresponding diffusions (thermal or void diffusion) within the band. As a rough guide, the dimensionless numbers: Thermal softening related number B, Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).
Resumo:
The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening curve higher than the compressive one and this is in agreement with experimental observations. (C) 1998 Elsevier Science Ltd.