15 resultados para Superhydrophobic and superoleophilic

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The nanostructured ZnO material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) and the surface functionalized by aminopropyltriethoxysilane (APS) was found to be hydrophobic. Then the superhydrophobic surface was constructed by depositing uniformly ZnO hydrophobic nanoparticles (HNPs) on the Poly(dimethylsiloxane) (PDMS) film substrate. Water wettability study revealed a contact angle of 155.4 +/- 2 degrees for the superhydrophobic surface while about 110 degrees for pure smooth PDMS films. The hysteresis was quite low, only 3.1 +/- 0.3 degrees. Microscopic observations showed that the surface was covered by micro- and nano-scale ZnO particles. Compared to other approaches, this method is rather convenient and can be used to obtain a large area superhydrophobic surface. The high contact angle and low hysteresis could be attributed to the micro/nano structures of ZnO material; besides, the superhydrophobic property of the as-constructed ZnO-PDMS surface could be maintained for at least 6 months. (C) Koninklijke Brill NV, Leiden, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths which cannot be obtained by molecular dynamics simulation alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A templateless, surfactantless, electrochemical approach is proposed to directly fabricate hierarchical flowerlike gold microstructures (HFGMs) on an indium tin oxide (ITO) substrate. The as-prepared HFGMs have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and cyclic voltammetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A templateless, surfactantless, electrochemical route is proposed to directly fabricate hierarchical spherical cupreous microstructures (HSCMs) on an indium tin oxide (ITO) substrate. The as-prepared HSCMs have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial waterproof reagent [(potassium methyl siliconate) (PMS)] was used for fabricating a superhydrophobic surface on a cellulose-based material (cotton fabric or paper) through a solution-immersion method. This method involves a hydrogen bond assembly and a polycondensation process. The silanol, which was formed by a reaction of PMS aqueous solution with CO2, Was assembled on the cellulose molecule surface via hydrogen bond interactions. The polymethylsilsesquioxane coatings were prepared by a polycondensation reaction of the hydroxyl between cellulose and silatiol. The superhydrophobic cellulose materials were characterized by FTIR spectroscopy, thermogravimetry, and surface analysis (XPS, FESEM, AFM, and contact angle measurements).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have prepared of a topography/chemical composition gradient polystyrene (PS) surface, i.e., an orthogonal gradient surface, to investigate the relationship between surface wettability and surface structure and chemical composition. The prepared surface shows a one-dimensional gradient in wettability in the x, y, and diagonal directions, including hydrophobic to hydrophilic, superhydrophobic to hydrophobic, superhydrophobic to superhydrophilic gradients, and so forth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perfectly hydrophobic (PHO) coatings consisting of silicone nanofibers have been obtained via a solution process using methyltrialkoxysilanes as precursors. On the basis of thermal gravimetry and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR) results, the formula of the nanofibers was tentatively given and a possible growth mechanism of the nanofibers was proposed. Because of the low affinity between the coatings and the small water droplet, when using these coatings as substrate for collecting water vapor, the harvesting efficiency could be enhanced as compared with those from bare glass substrate for more than 50% under 25 degrees C and 60-90% relative humidity. By removing the surface methyl group by heat treatment or ultraviolet (UV) irradiation, the as-prepared perfectly hydrophobic surface can be converted into a superhydrophilic surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we describe a simple and inexpensive method for forming superhydrophobic cloths with the highest water contact angle of close to 180 degrees, in which normal commercial cloths serving as pristine materials are modified with suitable gold micro/nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superhydrophobic cellulose-based materials coupled with transparent, stable and nanoscale polymethylsiloxane coating have been successfully achieved by a simple process via chemical vapor deposition, followed by hydrolyzation and polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rather simple but yet effective way to achieve a superhydrophobic film by extending a Teflon film is proposed. The water contact angle can be increased from 118 to 165degrees by extending to ca. 190%. The fibrous crystals and the increasing distance between the fibrous crystals are believed responsible for the high water-contact angle. It indicates that the density of the aligned microstructures is very important for the superhydrophobicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and inexpensive method for forming a low-density polyethylene (LDPE) superhydrophobic surface by controlling the crystallization behavior of LDPE by adjusting the crystallization time and nucleation rate has been proposed. The resulting porous surface, with hierarchical micro- and nanostructures on the beautiful floral designs, has a water contact angle of 173.0degrees +/- 2.5degrees.