5 resultados para Supercomputing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics.
Resumo:
Pen-based user interface (PUI) has drawn significant interest, owing to its intuitiveness and convenience. While much of the research focuses on the technology, the usability of a PUI has been relatively low since human factors have not been considered sufficiently. Scenario-centric designs are ideal ways to improve usability. However, such designs possess some problems in practical use. To cope with these design issues, the concept of “interface scenarios” is proposed in to facilitate the interface design, and to help users understand the interaction process in such designs. The proposed scenario-focused development method for PUI is coupled with a practical application to show its effectiveness and usability.
Resumo:
To consider the energy-aware scheduling problem in computer-controlled systems is necessary to improve the control performance, to use the limited computing resource sufficiently, and to reduce the energy consumption to extend the lifetime of the whole system. In this paper, the scheduling problem of multiple control tasks is discussed based on an adjustable voltage processor. A feedback fuzzy-DVS (dynamic voltage scaling) scheduling architecture is presented by applying technologies of the feedback control and the fuzzy DVS. The simulation results show that, by using the actual utilization as the feedback information to adjust the supply voltage of processor dynamically, the high CPU utilization can be implemented under the precondition of guaranteeing the control performance, whilst the low energy consumption can be achieved as well. The proposed method can be applied to the design in computer-controlled systems based on an adjustable voltage processor.
Resumo:
中国计算机学会