264 resultados para Submarine laser uplink communications
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
A 1.55 mu m InGaAsP-InP partly gain-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. The laser produces self-pulsations with a frequency tuning range of more than 135 GHz. All-optical clock recovery from 40 Gb/s degraded data streams has been demonstrated. Successful lockings of the device at frequencies of 30 GHz, 40 GHz, 50 GHz, and 60 GHz to a 10 GHz sidemode injection are also conducted, which demonstrates the capability of the device for all-optical clock recovery at different frequencies. This flexibility of the device is highly desired for practical uses. Crown Copyright
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We present a new generation 980 nm submarine pump module that consists of a hermitically sealed 8-pin ceramic MiniDIL package without thermo-electric cooler.
Resumo:
The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America
Resumo:
A diode-pumped Nd:GdVO4 laser mode-locked by a semiconductor saturable absorber and output coupler (SESAOC) is passively stabilized to suppress Q-switched mode-locking. A phase mismatched 131130 second-harmonic generation (SHG) crystal is used for passive stabilization. The continuous wave mode-locking (CWML) threshold is reduced and the pulse width is compressed. The pulse width is 6.5 ps as measured at the repetition rate of 128 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a protection scheme for transmitters in wavelength-division-multiplexing passive optical network (WDM-PON) has been proposed and demonstrated. If any downstream transmitter encounters problems at the central office (CO), the interrupted communication can be restored immediately by injecting a Fabry-Perot laser diode (FP-LD) with the upstream lightwave corresponding to the failure transmitter. Compared with the conventional methods, this proposed architecture provides a cost-effective and reliable protection scheme employing a common FP-LD. In the experiment, a 1 36 protection capability was implemented with a 2.5 Gbit/s downstream transmission capability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Antiphase dynamics has been observed experimentally for the laser modes operation in a laser-diode-pumped Q-switched microchip Yb:YAG laser with GaAs as a saturable absorber in the presence of spatial hole-burning. The Q-switched pulses sequences of two modes at different pump power have been obtained. The experimental results have shown that the pulses sequences displayed classic antiphase dynamics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Passive mode locking of a diode-pumped Nd:GdVO4 laser was demonstrated using In0.25Ga0.75As as saturable absorber as well as output coupler. The pulse width was measured to be about 16 ps with a repetition rate of 146 MHz. The average output power was 120 mW with pump power of 6 W. To our knowledge, this is the first demonstration on a passively mode-locked Nd:GdVO4 laser by using an In0.25Ga0.75As output coupler. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A passively Q-switched and mode-locked diode-pumped Nd:GdVO4 laser was demonstrated using a low-temperature-grown GaAs wafer (LT-GaAs) as an intracavity saturable absorber. The maximal Q-switched mode-locked average output power was 750 mW with the Q-switched envelop having a repetition rate of 167 kHz. The mode-locked pulse trains inside the Q-switched pulse envelope had a repetition rate of similar to 790 MHz.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.