76 resultados para Subband mixing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.
Resumo:
Analytical and numerical studies of secondary electro-osmotic flow EOF and its mixing in microchannels with heterogeneous zeta potentials are carried out in the present work. The secondary EOFs are analyzed by solving the Stokes equation with heterogeneous slip velocity boundary conditions. The analytical results obtained are compared with the direct numerical simulation of the Navier-Stokes equations. The secondary EOFs could transport scalar in larger areas and increase the scalar gradients, which significantly improve the mixing rate of scalars. It is shown that the heterogeneous zeta potentials could generate complex flow patterns and be used to enhance scalar mixing.
Resumo:
A theoretical expression for vertical profile-of horizontal velocity in terms of its depth-average is derived based on oscillatory boundary layer theory and estuarine flow characteristics. The derived theoretical profile is then incorporated into a vertical quasi-two-dimensional model, which is proved advantageous in more physical implications and less CPU time demand. To validate the proposed model, the calculated results are compared to the field data in the Yangtze River Estuary, exhibiting good agreement with observations. The proposed quasi-two-dimensional vertical model is used to study mixing process, especially dependence of salinity distribution and salt front strength on runoff and tides in estuaries.
Resumo:
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.
Resumo:
专门设计了可用于研究箭基组合循环发动机(RBCC)在起动阶段(Ma=0)所使用的引射火箭性能的实验装置.作为初步试验,研究了不同工况的引射热喷流(一次流)和被引射空气(二次流)之间混合的演变、发展过程,找出不同来流条件下影响引射性能的主要参数,为最终探明引射火箭的最佳工作条件打下基础,同时根据试验结果提出了促进一、二次流混合的可行方案,便于下一步深入研究.
Resumo:
For understanding the correctness of simulations the behaviour of numerical solutions is analysed, Tn order to improve the accuracy of solutions three methods are presented. The method with GVC (group velocity control) is used to simulate coherent structures in compressible mixing layers. The effect of initial conditions for the mixing layer with convective Mach number 0.8 on coherent structures is discussed. For the given initial conditions two types of coherent structures in the mixing layer are obtained.
Resumo:
The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.
Resumo:
A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallowtail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-epsilon turbulence model in a multi-block mesh. Turbulence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.
Resumo:
We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America
Resumo:
We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances.
Resumo:
A five-level tripod scheme is proposed for obtaining a high efficiency four-wave-mixing (FWM) process. The existence of double-dark resonances leads to a strong modification of the absorption and dispersion properties against a pump wave at two transparency windows. We show that both of them can be used to open the four-wave mixing channel and produce efficient mixing waves. In particular, higher FWM efficiency is always produced at the transparent window corresponding to the relatively weak-coupling field. By manipulating the intensity of the two coupling fields, the conversion efficiency of FWM can be controlled.
Resumo:
In a A-type system employing a two-photon pump field, a four-wave mixing field can be generated simultaneously and, hence, a closed-loop system forms. We study theoretically the effect of the relative phase between the two incident fields on the generated four-wave mixing field and the electromagnetically induced transparency. It is found that the phase of the generated four-wave mixing field is the sum of the incident relative phase and a fixed phase that is irrelative to the incident relative phase. Hence, the total phase of the closed-loop system is independent of the incident relative phase. As a result, the incident relative phase has no effect on the electromagnetically induced transparency, which is different from the case of a A-type loop system closed by a third incident field. (c) 2005 Pleiades Publishing, Inc.
Resumo:
We present a new approach for estimating mixing between populations based on non-recombining markers, specifically Y-chromosome microsatellites. A Markov chain Monte Carlo (MCMC) Bayesian statistical approach is used to calculate the posterior probability
Resumo:
1. The importance of vertical mixing in modulating the impact of UVR on phytoplankton photosynthesis was assessed in a tropical, shallow lake in southern China from late winter to mid-spring of 2005. 2. Daily cycles of fluorescence measurements (i.e. photosynthetic quantum yield, Y) were performed on both 'static' and in situ samples. Static samples were of surface water incubated at the surface of the lake under three radiation treatments - PAB (PAR + UVR, 280-700 nm), PA (PAR + UV-A, 320-700 nm) and P (PAR, 400-700 nm). In situ samples were collected every hour at three different depths - 0, 0.5 and 1 m. 3. The general daily pattern was of a significant decrease in Y from early morning towards noon, with partial recovery in the afternoon. Samples incubated under static conditions always had lower Y than those under in situ conditions at the same time of the day. 4. Under stratified conditions, no overall impact of UVR impact could be detected in situ when compared with the static samples. Further rapid vertical mixing not only counteracted the impact of UVR but also stimulated photosynthetic efficiency. 5. Based on these measurements of fluorescence, the mixing speed of cells moving within the epilimnion was estimated to range between 0.53 and 6.5 cm min(-1). 6. These data show that mixing is very important in modulating the photosynthetic response of phytoplankton exposed to natural radiation and, hence, strongly conditions the overall impact of UVR on aquatic ecosystems.