27 resultados para Stochastic transport equation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the closed form of solution to the stochastic differential equation for a fatigue crack evolution system is derived. and the relationship between metal fatigue damage and crack stochastic behaviour is investigated. It is found that the damage extent of metals is independent of crack stochastic behaviour ii the stochastic deviation of the crack growth rate is directly proportional to its mean value. The evolution of stochastic deviation of metal fatigue damage in the stage close to the transition point between short and long crack regimes is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transport processes of components in capillary electrochromatographic column was investigated based on the basic model of relaxation theory. A principal transport equation of chromatographic relaxation theory was established and mathematical expressions for eluting curves were obtained under the situations of both capillary electrophoresis and chromatography. Characteristics of peak symmetry and its effecting factors are discussed. Tailing peaks, symmetrical peaks and fronting peaks would be observed simultaneously, which was further proved with reversed capillary electrochromatographic experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mathematical modeling of multiphase fluid flow is an important aspect of basin simulation, and also is a topic of geological frontier. Based on coupling relation of temperature, pressure and fluid flow, this dissertation discusses the modeling which conform to geological regularities of fluid migration. The modeling that is multi-field and multiphase includes heat transport equation, pressure evolvement equation, solution transport equation and fluid transport equation. The finite element method is effective numerical calculation methods. Author applies it to solve modeling and implements the finite element program, and the modeling is applied to Ying-Qiong Basin. The channels of fluid vertical migration are fault, fracture and other high penetrability area. In this thesis, parallel fracture model and columnar channel model have been discussed, and a characteristic time content and a characteristic space content been obtained to illustrate the influences of stratigraphic and hydrodynamic factors on the process. The elliptoid fracture model is established and its approximately solution in theory is gotten. Three kinds of modeling are applied to analyze the transient variation process of fluid pressure in the connected permeable formations. The elliptoid fracture model is the most similar geology model comparing with the other fracture models so the research on this fracture model can enhance the understanding to fluid pressure. In the non-hydrodynamic condition, because of the difference between water density and nature gas density, nature gas can migrate upon by float force. A one-dimension mathematical model of nature gas migration by float force is established and also applied to analyze the change in the saturation of gas. In the process of gas migration its saturation is non-continuous. Fluid flow is an important factor which influences the distribution of the temperature-field, the change of temperature can influence fluid property (including density, viscidity, and solubility),a nd the temperature field has coupling relations to the fluid pressure field. In this dissertation one-dimension and two-dimension thermal convection modeling is developed and also applied to analyze convective and conductive heat transfer. Author has established one-dimension and two-dimension mathematical modeling in which fluid is a mixture of water and nature gas based on the coupling relation between temperature and pressure, discussed mixture fluid convection heat transfer in different gas saturation, and analyzed overpressure form mechanism. Based on geothermal abnormity and pore pressure distribution in Dongfong 1-1, Yinggehai Basin, South China Sea, one-dimension mathematical modeling of coupling temperature and pressure is established. The modeling simulates the process that fluid migrates from deep to shallow and overpressure forms in shallow. When overpressure is so large that fractures appear and overpressure is released. As deep fluid flow to shallow, the high geothermal then forms in shallow. Based on the geological characteristics in Ya13-1, two-dimension mathematical modeling of coupling temperature and pressure is established. Fluid vertically flows in fault and then laterally migrates in reservoir. The modeling simulates the geothermal abnormity and pore pressure distribution in reservoir.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the approximate high-frequency asymptotic methods to solve the scalar wave equation, we can get the eikonal equation and transport equation. Solving the eikonal equation by the method of characteristics provides a mathematical derivation of ray tracing equations. So, the ray tracing system is folly based on the approximate high-frequency asymptotic methods. If the eikonal is complex, more strictly, the eikonal is real value at the rays and complex outside rays, we can derive the Gaussian beam. This article mainly concentrates on the theory of Gaussian beam. To classical ray tracing theory, the Gaussina beam method (GBM) has many advantages. First, rays are no longer required to stop at the exact position of the receivers; thus time-consuming two-point ray tracing can be avoided. Second, the GBM yields stable results in regions of the wavefield where the standard ray theory fails (e.g., caustics, shadows zones and critical distance). Third, unlike seismograms computed by conventional ray tracing techniques, the GBM synthetic data are less influenced by minor details in the model representation. Here, I realize kinematical and dynamical system, and based on this, realize the GBM. Also, I give some mathematical examples. From these examples, we can find the importance and feasibility of the ray tracing system. Besides, I've studied about the reflection coefficient of inhomogeneous S-electromagnetic wave at the interface of conductive media. Basing on the difference of directions of phase shift constant and attenuation constant when the electromagnetic wave propagates in conductive medium, and using the boundary conditions of electromagnetic wave at the interface of conductive media, we derive the reflection coefficient of inhomogeneous S-electromagnetic wave, and draw the curves of it. The curves show that the quasi total reflection will occur when the electromagnetic wave incident from the medium with greater conductivity to the medium with smaller conductivity. There are two peak, values at the points of the critical angles of phase shift constant and attenuation constant, and the reflection coefficient is smaller than 1. This conclusion is different from that of total reflection light obviously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.