87 resultados para Statistical Thermodynamics

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gibbs free energies and equations of state of polymers with special molar mass distributions, e.g., Flory distribution, uniform distribution and Schulz distribution, are derived based on a lattice fluid model. The influence of the polydispersity (or t

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Gibbs free energy, the equation of state and the chemical potentials of polydisperse multicomponent polymer mixtures are derived. For general binary mixtures of polydisperse polymers, we also give the Gibbs free energy, the equation of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a binary mixture of polydisperse polymers with strong interactions, the free energy, the equation of state, the chemical potentials and the spinodal are formulated on the basis of the lattice fluid model. Further, the spinodal curves for the system wi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical thermodynamics theory of polydisperse polymer blends based on a lattice model description of a fluid is formulated. Characterization of a binary polydisperse polymer mixture requires a knowledge of the pure polymer system and the interaction energy. It is assumed that the intrinsic and interactive properties of polymer (for example, T*, P*, rho*, and epsilon(ij)*) are independent of molecular size. Thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid polymer parameters and the binary interaction energies. Thermodynamic stability criteria for the phase transitions of a binary mixture are shown. The binodal and spinodal of general binary systems and of special binary systems are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical thermodynamics theory of polydisperse polymer mixtures with strong interaction between dissimilar components based on a lattice fluid model is formulated. Expressions for the free energy, equation of state, phase stability and spinodal for a polydisperse, binary polymer mixture with strong interaction are derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical thermodynamics theory of polydisperse polymers based on a lattice model of fluids is formulated. Pure polydisperse polymer can be completely characterized by three scale factors and the molecular weight distribution of the system. The equation of state does not satisfy a simple corresponding-states principle, except for a polymer fluid of sufficiently high molecular weight. The relationships between thermal expansion coefficient alpha and isothermal compressibility beta with reduced variables are also predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical thermodynamics theory of a polydisperse polymer based on a lattice model of a fluid is formulated. The pure polydisperse polymer is completely characterized by three scale factors and the distribution law of the system. The equation of state does not satisfy a simple corresponding state principle, except for the polymer fluid with sufficiently high molecular weight.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sanchez-Lacombe (SL) lattice-fluid theory was used to predict the miscibility of the PEO/PVAc blending system. Integral interaction parameters, g of this polymer pair were calculated by using SL theory. And the effect of the temperature, composition of blends and molecular weight of PVAc on the extent of their miscibility has been discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the statistical thermodynamics theory, a theoretical model of adsorbate induced surface stress of adatoms adsorption on solid surface is presented. For the low coverage, the interaction between the adsorbed molecules is entirely negligible and the adsorption induced surface stress is found to be the function of the coverage and the adsorption energy change with strain. For the high coverage, the adsorbate-adsorbate interaction contributes to the adsorption-induced surface stress effectively. In the case of carbon adsorption on the Ni(100) surface, the value of 0.5 is obtained as a characteristic coverage to decide whether to take the interaction between the adsorabtes into consideration and the results also show that the adsorption induces a compressive surface stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular weight dependence of phase separation behavior of the Poly (ethylene oxide) (PEO)/Poly(ethylene oxide-block-dimethylsiloxane) (P(EO-b-DMS)) blends was investigated by both experimental and theoretical methods. The cloud point curves of PEO/P(EO-b-DMS) blends were obtained by turbidity method. Based on Sanchez-Lacombe lattice fluid theory (SLLFT), the adjustable parameter, epsilon*(12)/k (quantifying the interaction energy between different components), was evaluated by fitting the experimental data in phase diagrams. To calculate the spinodals, binodals, and the volume changes of mixing for these blends, three modified combining rules of the scaling parameters for the block copolymer were introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables r(n), r(w), r(z), and chain-length distribution, have effects on the spinodals for polydisperse polymer blends.