15 resultados para Solar Thermal Collector

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we use a pulsed rapid thermal processing (RTP) approach to create an emitter layer of hetero-junction solar cell. The process parameters and crystallization behaviour are studied. The structural, optical and electric properties of the crystallized films are also investigated. Both the depth of PN junction and the conductivity of the emitter layer increase with the number of RTP pulses increasing. Simulation results show that efficiencies of such solar cells can exceed 15% with a lower interface recombination rate, but the highest efficiency is 11.65% in our experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1 x 10(14) to 5 x 10(15) e/cm(2). The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260 degrees C for 30 min. Four electron traps, E-c - 0.24 eV, E-c - 0.41 eV, E-c - 0.51 eV, E-c - 0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline silicon (poly-Si) films(similar to 10 mu m) were grown from dichlorosilane by a rapid thermal chemical vapor deposition (RTCVD) technique, with a growth rate up to 100 Angstrom/s at the substrate temperature (T-s) of 1030 degrees C. The average grain size and carrier mobility of the films were found to be dependent on the substrate temperature and material. By using the poly-Si films, the first model pn(+) junction solar cell without anti-reflecting (AR) coating has been prepared on an unpolished heavily phosphorus-doped Si wafer, with an energy conversion efficiency of 4.54% (AM 1.5, 100 mW/cm(2), 1 cm(2)).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200℃.Metal plates were used as heat sinks for cooling the system, which remarkably reduce the cell temperature. For a fixed concentration ratio, the cell temperature reduced as the heat sink area increased. In order to keep the cell at a constant temperature, the heat sink area needs to increase linearly as a function of the concentration ratio. GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model. A cell temperature of 37℃ was measured when using a heat sink at 400X concentratration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyurea microcapsules about 2.5 mum in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a high molar extinction coefficient organic sensitizer for high efficiency dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a similar to 7% cell showing an excellent stability measured under the thermal and light soaking dual stress. This is expected to have an important practical consequence on the production of flexible, low-cost, and lightweight DSC based on plastic matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new metal-free organic sensitizer (see figure) for high-performance and applicable dye-sensitized solar cells is presented. In combination with a solvent-free ionic liquid electrolyte, a similar to 7% cell made with this sensitizer shows all excellent stability measured under thermal and light-soaking dual stress. For the first time a 4.8% efficiency is reached for all-solid-state dye-sensitized solar cells based oil all organic dye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effects of thermal annealing before and after cathode deposition on poly(3-hexylthiophene)(P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic cells with different cathode buffer layers. The introduction of cathode buffer layer such as lithium fluoride (LiF) and calcium oxide (CaO) in pre-annealing cells can increase the open-circuit voltage (V-oc) and the power conversion efficiency (PCE). Post thermal annealing after cathode deposition further enhanced the PCE of the cells with LiF/Al cathode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable bilayer thin films of indium tin oxide (ITO) on CdS and CdS on ITO were formed for the window material of solar cells by chemical bath and sputtering methods. Scanning electron microscopy and X-ray diffraction studies have shown that both the ITO and CdS films are continuous, homogeneous, with high compactness. Measurement of the CdS film thickness across the 2 x 4 cm(2) reveals the good uniformity of these films. Four-point probe measurements show that the resistivity of a CdS film on an ITO surface is much better than that of the single CdS film The thermal stability of an ITO/CdS bilayer, interfacial reaction and optical transmittance were investigated at different annealing temperatures and environments (air, vacuum and N-2 + H-2). The results showed that the ITO/CdS bilayer film is a good window material for the CuInSe2 and CdTe cells. It is a simple method using a small amount of the cadmium compound.