35 resultados para Severe Head-injury
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Severe acute respiratory syndrome (SARS) is a serious disease with many puzzling features. We present a simple, dynamic model to assess the epidemic potential of SARS and the effectiveness of control measures. With this model, we analysed the SARS epidemic data in Beijing. The data fitting gives the basic case reproduction number of 2.16 leading to the outbreak, and the variation of the effective reproduction number reflecting the control effect. Noticeably, our study shows that the response time and the strength of control measures have significant effects on the scale of the outbreak and the lasting time of the epidemic.
Resumo:
Bulk nanostructured metals are often formed via severe plastic deformation (SPD). The dislocations generated during SPD evolve into boundaries to decompose the grains. Vacancies are also produced in large numbers during SPD, but have received much less attention. Using transmission electron microscopy, here we demonstrate a high density of unusually large vacancy Frank loops in SPD-processed Al. They are shown to impede moving dislocations and should be a contributor to strength. (C) 2007 American Institute of Physics.
Resumo:
In this paper, available elimination techniques are assessed. OLGA2000 software is used to simulate severe slugging formation mechanism in certain offshore riser. The simulation results show that pressure fluctuations of riser base and riser top is very large and severe slugging easily forms. Sensibility analysis shows that the measures and methods which include properly reducing pipe riser diameter, reducing water cut increasing terminal pressure, decreasing the height and inclination of riser and increasing GOR can eliminate or control severe slugging in riser pipe.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.
Resumo:
The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.