26 resultados para Semantic distance
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Chinese deep dyslexia is an important type of reading disorder that attracted many research interests. In the current thesis, three studies concerning Chinese deep dyslexia were performed: (1) clinical dominating and incidental symptoms were collected and their relationships were analyzed, and error scores of different character and word types compared; to verify typical reading model of alphabetic readers, and to develope a novel model for reading Chinese scripts; (2) based on these results, further neuropsychological analysis on the basic rules of lexical-semantic system and semantic distance were employed; (3) rehabilitation scheme were shaped to verify our research results. With cognitive neuropsychological methods, this study was mainly focused on deep dyslexic patients with brain impairment. The results were compared with those of normal people on rapid reading. Computer emulation was also used to describe reading process of patients. Both group analysis and case study were carried out. This study for the first time systematically investigated the clinical symptoms of Chinese deep dyslexia. A novel model was developed with a hypothesis that the sublexical pathway is composed of two parallel pathways: the phonetic sublexical pathway and the semantic sublexical pathway. Two characteristics of Chinese deep dyslexia were found compared with alphabetic deep dyslexia: (1) having no distinct word class effect and imagination effect; (2) the organization of Chinese lexical-semantic system has correlation with construct regulation, imagination and splitability of characters. Evoking of semantic correlation is stronger than phonetic correlation.
Resumo:
A Monte Carlo simulation is performed to study the dependence of collision frequency on interparticle distance for a system composed of two hard-sphere particles. The simulation quantitatively shows that the collision frequency drops down sharply as the distance between two particles increases. This characteristic provides a useful evidence for the collision-reaction dynamics of aggregation process for the two-particle system described in the other reference.
Resumo:
Random field theory has been used to model the spatial average soil properties, whereas the most widely used, geostatistics, on which also based a common basis (covariance function) has been successfully used to model and estimate natural resource since 1960s. Therefore, geostistics should in principle be an efficient way to model soil spatial variability Based on this, the paper presents an alternative approach to estimate the scale of fluctuation or correlation distance of a soil stratum by geostatistics. The procedure includes four steps calculating experimental variogram from measured data, selecting a suited theoretical variogram model, fitting the theoretical one to the experimental variogram, taking the parameters within the theoretical model obtained from optimization into a simple and finite correlation distance 6 relationship to the range a. The paper also gives eight typical expressions between a and b. Finally, a practical example was presented for showing the methodology.
Resumo:
The focusing characteristics of long-distance flying optics were studied systemically for TEMmn Gaussian beams. The results show that the ABCD law of parameter q can be extended to Gaussian modes of any order when waist radius w in the imaginary part of parameter q is replaced by Rayleigh range Z(R) of a certain resonator in the equation. The difference between the real focal length and the geometric focal length, defined as Delta f, was calculated for laser applications. A novel self-adaptive optical system was demonstrated for precisely controlling the focusing characteristics of long-distance flying optics, Theoretical analyses and experimental results were consistent. (c) 2006 Optical Society of America.
Resumo:
Source levels and phonation intervals of whistles produced by a free-ranging baiji (Chinese river dolphin) were measured in the seminatural reserve of Shishou in Hubei, China. A total of 43 whistles were recorded over 12 recording sessions. The mean dominant frequency (the frequency at the highest energy) was 5.7 kHz (s.d.=0.67). The calculated source level was 143.2 dB rms re 1 mu Pa (s.d.=5.8). Most phonation intervals were shorter than 460 s, and the average interval was 205 s (s.d. = 254). Theoretical detection range of baiji's whistle was 6600 m at the present study site, but it could reduce a couple of hundred meters in practical noisy situation in the Yangtze River. Sporadic phonation (205 s interval on average) with relatively faint signal of baiji was considered, to be difficult to be detected by a towing hydrophone system. Stationed monitoring or slow speed towing of hydrophones along the river current is recommended. (c) 2006 Acoustical Society of America.
Resumo:
Imaginary-distance beam propagation method under the perfectly matched layer boundary condition is applied to judge single-mode behaviour of optical waveguides, for the first time to our knowledge. A new kind of silicon-on-insulator-based rib structures with half-circle cross-section is presented. The single-mode behaviour of this kind of waveguide with radius 2mum is investigated by this method. It is single-mode when the slab height is not smaller than the radius.
Resumo:
This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.
Resumo:
Ontologies play a core role to provide shared knowledge models to semantic-driven applications targeted by Semantic Web. Ontology metrics become an important area because they can help ontology engineers to assess ontology and better control project management and development of ontology based systems, and therefore reduce the risk of project failures. In this paper, we propose a set of ontology cohesion metrics which focuses on measuring (possibly inconsistent) ontologies in the context of dynamic and changing Web. They are: Number of Ontology Partitions (NOP), Number of Minimally Inconsistent Subsets (NMIS) and Average Value of Axiom Inconsistencies (AVAI). These ontology metrics are used to measure ontological semantics rather than ontological structure. They are theoretically validated for ensuring their theoretical soundness, and further empirically validated by a standard test set of debugging ontologies. The related algorithms to compute these ontology metrics also are discussed. These metrics proposed in this paper can be used as a very useful complementarity of existing ontology cohesion metrics.
Resumo:
In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.
Resumo:
An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.