85 resultados para Secondary amines

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A convenient and cost-effective strategy for synthesis of hyperbranched poly(ester-amide)s from commercially available dicarboxylic acids (A(2)) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB(2)-type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester-amide)s bearing multi-hydroxyl end-groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general procedure to determine the absolute configuration of cyclic secondary amines with Mosher's NMR method is demonstrated, with assignment of absolute configuration of isoanabasine as an example. Each Mosher amide can adopt two stable conformations (named rotamers) caused by hindered rotation around amide C-N bond. Via a three-step structural analysis of four rotamers, the absolute configuration of (-)-isoanabasine is deduced to be (R) on the basis of Newman projections, which makes it easy to understand and clarify the application of Mosher's method to cyclic secondary amines. Furthermore, it was observed that there was an unexpected ratio of rotamers of Mosher amide derived from (R)-isoanabasine and (R)-Mosher acid. This phenomenon implied that it is necessary to distinguish the predominant rotamer from the minor one prior to determining the absolute configuration while using this technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reductive carbonylation of nitrobenzene catalyzed by selenium to yield unsymmetric phenylureas has been studied. When secondary amines were used as coreagents, a single product, PhNHCONR2, was formed; when primary amines were chosen as coreagents, mixed products, including RNHCONHR, RNHCONHPh and PhNHCONHPh, were obtained. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

过去十多年,世界手性药物市场需求迅速增长,手性制药工业的发展壮大,已经引起了各国政府、学术界,特别是企业界的高度重视。手性药物中含有大量的手性胺单元,因此研究高效构建手性胺结构单元的方法具有重要的意义和实用价值,而亚胺的不对称还原是合成手性胺最便捷的方法。 手性有机小分子路易斯碱催化三氯氢硅不对称还原亚胺是最近几年才发展起来的一类新的亚胺不对称还原方法。尽管在对映选择性和底物适用范围等方面已经获得了突破性的进展,但是,高性能的路易斯碱催化剂仅局限于N-甲酰氨基酸酰胺一种类型,而且其底物适用范围和催化活性仍不够理想。因此,发展新型催化剂很有必要。 手性硫氧化物作为手性诱导剂的应用已经有数十年的时间,广泛应用在不对称合成及天然产物的全合成中。理论上,硫氧结构单元也可以作为路易斯碱,对硅烷类试剂进行活化,而且硫氧键还有碳氧键难以比拟的先天优势,硫原子自带手性特征,在反应过程中,手性中心离反应位点更近,因此,从手性硫氧化合物出发,极有可能开发出新的高效手性路易斯碱催化剂。最近,Kobayashi和Khiar在亚胺的不对称烯丙基化反应中用手性亚砜活化烯丙基三氯硅烷,获得了较好的ee值,但反应中手性亚砜的用量都需要化学计量以上,因此还不能算做真正意义上的催化剂,进一步的文献调研也未见真正意义上的硫手性有机小分子催化剂。 本文首次成功将硫手性亚磺酰胺衍生物应用于催化三氯氢硅对亚胺的不对称还原,在经过对亚磺酰胺衍生物的多次结构优化,开发出了合成容易,催化活性和立体选择性都很优良,并且有着前所未有的底物普适性的新型手性路易斯碱催化剂。 我们首先尝试将商品化的20mol%叔丁基亚磺酰胺和对甲基亚磺酰胺直接用作催化剂催化三氯氢硅对亚胺的不对称还原,尽管仅获得中等的收率和很低的对映选择性,但证明我们的设计思路是可行的。在此基础上,我们以叔丁基亚磺酰胺为原料和基本骨架,设计合成了一系列的亚磺酰胺类催化剂,通过对催化剂的结构改造,发现当催化剂中存在较强酸性的酚羟基时,催化效果得到大幅提高。随着对催化剂的进一步结构优化,我们找到了一个结构简单,催化效果还不错的催化剂,经过反应条件优化以后,催化反应的收率最高能达到98%,对映选择性最高达93%,并且这个催化剂的底物适应范围比之前报道的催化剂都要广泛。针对酚羟基在催化剂中的重要作用,我们进行了仔细的机理研究后发现,在催化反应中,催化剂极有可能是通过双分子机理去活化三氯氢硅从而实现不对称催化的,而酚羟基的作用就是通过分子间氢键促进双分子催化剂与三氯氢硅的络合。受此启发,我们设计了一系列具有双齿结构的催化剂,通过对双齿催化剂的结构优化,最终筛选出了一个结构更加简单,但催化效果更好的双齿催化剂。10mol%该催化剂催化亚胺还原最高获得95%的收率和96%的ee值。这一结果也进一步验证了我们先前对催化剂机理的推测。 随后,我们还尝试将这些催化剂用于二级胺和芳香酮的直接还原胺化反应中,虽然能获得不错的收率,但对映选择性却很差,我们对反应条件进行了仔细的摸索,仍然没有获得突破。但这些实验为进一步研究二级胺和酮的不对称直接还原胺化反应奠定了良好的基础。 In the past decade, the rapid growth of the global chiral drug market and the significant development of the chiral pharmaceutical industry have attracted a great deal of attention from government, academia and enterprises. Chiral amine is an important structural motif of chiral drugs. Therefore, development of methods for the construction of this motif is of great importance. Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines. The chiral Lewis base organocatalysts promoted asymmetric reduction of imines by HSiCl3 has recently achieved significant advancements. Although big breakthroughs have been made in terms of substrate generality and enantioselectivity, the highly effective catalysts are limited to N-formyl amino acid amides, of which the efficiency and substrate scope remain unsatisfactory. Therefore, development of novel organocatalysts for this transformation is in great demand. Chiral sulfoxides have been well established as efficient and versatile stereocontrollers and have been extensively used in asymmetric synthesis and total synthesis of natural products. The S=O structural motif of sulfoxide could also behave as Lewis base activator for cholorsilane reagents, which, moreover, could be even better than caboxamide considering that the sulfur atom is chiral and thus the chirality center is closer to the reaction center. There exist great potentials that highly effective novel Lewis base organocatalysts could be developed starting from S-chiral sulfoxides. Recently, several S-chiral sulfoxides were reported by Kobayashi and Khiar to be used as Lewis base catalyst to activate allyltrichlorosilanes in asymmetric allylations and good enantioselectivities were obtained. However, these S-chiral sulfoxides were all used at a more than stoichiometric amount and were thus not authentically catalytic. A careful literature survey further revealed that there has been so far no S-chiral organocatalyst available. In this study, we, for the first time, successfully used S-chiral sulfinamides as Lewis base organocatalysts for the asymmetric reduction of ketimines by HSiCl3. After several rounds of structural optimization, we developed the first example of highly effective S-chiral organocatalysts, which promoted the asymmetric reduction of ketimines with trichlorosilane in high yield and excellent enantioselectivity with unprecedented substrate spectrum. In our initial practice, we examined 20mol% of the commercially available (R)-tert-butanesulfinamide and (S)-toluenesulfinamide as the catalyst in the hydrosilylation of ketimine. Although the product was only furnished in moderate yield and low ee, these results demonstrated that our strategy of catalyst design is on the right way. Next, starting from chiral tert-butanesulfinamide, we prepared a series of tert-butanesulfinamide derivatives via simple reductive amination and examined their catalytic efficiencies in the reduction of ketimine. We found that the catalyst bearing a phenolic hydroxyl group exhibited good reactivity and enantioselectivity. On the basis of which, we obtained a structurally simple and highly effective novel organocatalyst, affording the product in 98% yield and 93% ee under optimal reaction conditions. After careful exploration on the role of phenolic hydroxyl group in the catalyst, we speculated that two molecules of the catalyst be involved in the course of reaction, of which the assembly around the silicon center is facilitated by the intermolecular hydrogen bonding through the phenolic hydroxyl groups. Thus, we incorporated two units of sulfonamide into one molecular and prepared a new type of bissulfinamides organocatalysts and examined their catalytic efficiencies in the reduction of ketimine. After optimizing the structure of these catalysts, we finally obtained a novel organocatalyst which has even simpler molecular structure but showed better efficacies, 10mol% of which afforded up to 97% yield and 96% ee under optimal reaction conditions. These results further proved our speculation about the catalytic mechanism. We also examined the newly developed S-chiral organocatalysts in direct asymmetric reductive amination of secondary amines with aromatic ketone. The product was furnished in good yield but in low ee. No better results could be obtained despite our intense opimization efforts. Nevertheless, these experiments laid excellent foundations for eventual success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of turbulent flow in a straight duct of square cross-section is made. An order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector-potential formulation, are expanded as a multi-deck structure with each deck characterized by its dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic element representation on each cross-sectional plane. The numerical integration along the streamwise direction is carried out with finite-difference approximations until a fully-developed state is reached. The computed results agree well with other numerical studies and compare very favorably with the available experimental data. One important outcome of the current investigation is the interpretation analytically that the driving force of the secondary flow in a square duct comes mainly from the second-order terms of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel short neurotoxin, cobrotoxin c (CBT C) was isolated from the venom of monocellate cobra (Naja kaouthia) using a combination of ion-exchange chromatography and FPLC. Its primary structure was determined by Edman degradation. CBT C is composed of 61 amino acid residues. It differs from cobrotoxin b (CBT B) by only two amino acid substitutions, Thr/Ala11 and Arg/Thr56, which are not located on the functionally important regions by sequence similarity. However, the LD50 is 0.08 mg/g to mice, i.e. approximately five-fold higher than for CBT B. Strikingly, a structure-function relationship analysis suggests the existence of a functionally important domain on the outside of Loop III of CBT C. The functionally important basic residues on the outside of Loop III might have a pairwise interaction with alpha subunit, instead of gamma or delta subunits of the nicotinic acetylcholine receptor (nAChR). (C) 2002 Elsevier Science Inc. All rights reserved.