62 resultados para Secondary Motions

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Hill instability analysis of Tension Leg Platform (TLP) tether it, deep sea. The 2-D nonlinear beam model which is Undergoing Coupled axial and transverse vibrations, is applied. The governing equations are reduced to nonlinear Hill equation by use of the Galerkin's method and the modes superposition principle. The Hill instability charted Lip to large parameters is obtained. An important parameter M is defined and can he expressed as the functions of tether length, the platform surge and heave motion amplitudes. Some example studies are performed for various environmental conditions. The results demonstrate that the nonlinear coupling between the axial and transverse vibrations has a significant effect on the response of structure.. It needs to be considered for the accurate dynamic analysis of long TLP tether subjected to the combined platform surge and heave motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arc root motions in generating dc argon-hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of turbulent flow in a straight duct of square cross-section is made. An order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector-potential formulation, are expanded as a multi-deck structure with each deck characterized by its dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic element representation on each cross-sectional plane. The numerical integration along the streamwise direction is carried out with finite-difference approximations until a fully-developed state is reached. The computed results agree well with other numerical studies and compare very favorably with the available experimental data. One important outcome of the current investigation is the interpretation analytically that the driving force of the secondary flow in a square duct comes mainly from the second-order terms of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper particular investigation is directed towards the combined effects of horizontal and vertical motions of real earthquakes to structures resting on sliding base. A simplified method is presented to treat the nonlinear effects of time dependent frictional force of the sliding base as a function of the vertical reaction produced by the foundation. As an example, the El Centro 1940 earthquake record is used on a structural model to show the structural responses due to a sliding base with different frictional and stiffness characteristics. The study shows that vertical ground motion does affect both the superstructure response and the base sliding displacement. Nevertheless, the sliding base isolator is shown to be effective for the reduction of seismic response of a superstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tension leg platform (TLP) is an important kind of working station for deep water exploration and development in ocean, whose dynamic responses deserve a serious thought. It is shown that for severe sea state, the effects of nonlinearities induced by large displacements of TLP may be noteworthy, and then employment of small displacements model should be restrained. In such situation, large amplitude motion model may be an appropriate alternative. The numerical experiments are performed to study the differences of dynamic responses between the two models. It is shown that for most cases, differences between results of the two models are significant. The variances of the differences vs. the wave period are the most remarkable, and that of the differences vs. wave heading angle are also apparent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.