75 resultados para Schottky, Diodos de barreira de

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unexpected decrease in measured responsivity observed in a specific GaN Schottky barrier photodetector (PD) at high reverse bias voltage was investigated and explained. Device equivalent transforms and small signal analysis were performed to analyse the test circuit. On this basis, a model was built which explained the responsivity decrease quantitatively. After being revised by this model, responsivity curves varying with bias voltage turned out to be reasonable. It is proved that the decrease is related to the dynamic parallel resistance of the photodiode. The results indicate that with a GaN Schottky PD, the choice of load resistance is restricted according to the dynamic parallel resistance of the device to avoid responsivity decay at high bias voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For realization of hexagonal BDD-based digital systems, active and sequential circuits including inverters, flip flops and ring oscillators are designed and fabricated on GaAs-based hexagonal nanowire networks controlled by Schottky wrap gates (WPGs), and their operations are characterized. Fabricated inverters show comparatively high transfer gain of more than 10. Clear and correct operation of hexagonal set-reset flip flops (SR-FFs) is obtained at room temperature. Fabricated hexagonal D-type flip flop (D-FF) circuits integrating twelve WPG field effect transistors (FETs) show capturing input signal by triggering although the output swing is small. Oscillatory output is successfully obtained in a fabricated 7-stage hexagonal ring oscillator. Obtained results confirm that a good possibility to realize practical digital systems can be implemented by the present circuit approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt Schottky diode gas sensors for CO are fabricated using AlGaN/ GaN high electron mobility transistor ( HEMTs) structure. The diodes show a remarkable sensor signal (3 mA, in N-2; 2mA in air ambient) biased 2V after 1% CO is introduced at 50 degrees C. The Schottky barrier heights decrease for 36meV and 27meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector is proposed. In comparision with conventional i-CaN/n(+)-GaN structure, an additional thin p-GaN cap layer is introduced on the i-GaN(n(-)-GaN) in the new structure. The simulation results showed that the additional layer makes the dark current to decrease in the photodetector due to the increase of the Schottky barrier height. The effects of thickness and carrier concentration of p-GaN layer on the dark current of the photodetector were also studied. It is suggested that the dark current of the new structure device could be better reduced by employing p-GaN with higher carrier concentration as the cap layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ir and Ni Schottky contacts on strained Al0.25Ga0.75N/GaN heterostructures, and the Ni Schottky contact with different areas on strained Al0.3Ga0.7N/GaN heterostructures have been prepared. Using the measured capacitance-voltage curves and the current-voltage curves obtained from the prepared Schottky contacts, the polarization charge densities of the AlGaN barrier layer for the Schottky contacts were analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the polarization charge density of the AlGaN barrier layer for the Ir Schottky contact on strained Al0.25Ga0.75N/GaN heterostructures is different from that of the Ni Schottky contact, and the polarization charge densities of the AlGaN barrier layer for Ni Schottky contacts with different areas on strained Al0.3Ga0.7N/GaN heterostructures are different corresponding to different Ni Schottky contact areas. As a result, the conclusion can be made that Schottky contact metals on strained AlGaN/GaN heterostructures have an influence on the strain of the AlGaN barrier layer. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/AlGaN/AIN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300K is obtained at a fixed forward current after switching from N-2 to 10%H-2+N-2. The sensor responses under different concentrations from 50ppm H-2 to 10%H-2+N-2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N-2 and air atmosphere at 300 and 373K are compared. Oxygen in air accelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity of the sensor are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new measurement method for GaN films and their Schottky contacts is reported in this paper. Instead of the fabrication of Ohmic contacts, this measurement is based on a special back-to-back Schottky diode that has a rectifying character. A mathematical model indicates that the electronic parameters of the materials can be deduced from the device's I-V data. In the experiment of an unintentionally doped n-type GaN layer with a residual carrier density 7 x 10(16) cm(-3), the analysis by the new method gives the layer's sheet resistance rho(s) = 497 Omega, the electron mobility mu(n) =, 613 cm(2) V-1 s(-1) and the ideality factor of the Ni/Au-GaN Schottky contacts n = 2.5, which are close to the data obtained by the traditional measurements: rho(s) = 505 Omega, mu(n) = 585 cm(2) V-1 s(-1) and n = 3.0. The method reported can be adopted not only for GaN films but also for other semiconductor materials, especially in the cases where Ohmic contacts of high quality are hard to make or their fabricating process affects the film's character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual dark current voltage (I-V) characteristics were observed in GaN Schottky diodes. I-V characteristics of the GaN Schottky diodes were measured down to the magnitude of 10(-14) A. Although these Schottky diodes were clearly rectifying, their I-V characteristics were non-ideal which can be judged from the non-linearity in the semi-logarithmic plots. Careful analysis of the forward bias I-V characteristics on log-log scale indicates space-charge-limited current (SCLC) conduction dominates the current transport in these GaN Schottky diodes. The concentration of the deep trapping centers was estimated to be higher than 10(15) cm(-3). In the deep level transient spectra (DLTS) measurements for the GaN Schottky diodes, deep defect levels around 0.20 eV below the bottom of the conduction band were identified, which may act as the trapping centers. The concentration of the deep centers obtained from the DLTS data is about 5 x 10(15) cm(-3). SCLC measurements may be used to probe the properties of deep levels in wide bandgap GaN-AlGaN compound semiconductors, as is the case with insulators in the presence of trapping centers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new GaN-based ultraviolet photodetector with Schottky barrior structure is proposed. Comparied with the conventional i-GaN/n(+) -GaN structure, there is an additional thin n-AlGaN cap layer on the i-GaN in the new structure. The simulation result demonstrates that the new structure leads to an increased quantum efficiency in GaN photodetection, since the negative effect of surface states on the photodetector is reduced in the new structure. In addition, it is suggested that the performance of device with the new structure could be further improved by employing an even thinner AlGaN cap layer with higher carrier concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of defects on the responsivity of GaN Schottky barrier ultraviolet photodetectors with n(-)-GaN/n(+)-GaN layer structures is investigated. It is found that employing undoped GaN instead of Si-doped GaN as the n(-)-GaN layer brings about a higher responsivity due to a lower Ga vacancy concentration. On the other hand, the dislocations may increase the recombination of electron-hole pairs and enhance the surface recombination in the photodetectors. Employing undoped GaN and reducing the dislocation density in the n(-)-GaN layer are necessary to improve the responsivity of Schottky barrier photodetectors. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under identical preparation conditions, Au/GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. (c) 2006 American Institute of Physics.