23 resultados para STEREOSELECTIVE IODOLACTONIZATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This work presents the salen-Co(II) complex catalyzed enantioselective iodolactonizations of various 4-pentenoic acid derivatives with good enantioselectivities (up to 83% ee).
Resumo:
Chiral quaternary ammonium salts derived from cinchonidine have been applied to catalyze the stereoselective iodolactonizations of trans-5-aryl-4-pentenoic acids leading to a mixture of two regioselectively iodolactonized products with fair to excellent yield (37-98%) and moderate enantioselectivity (exo = 42.0% ee, endo = 31.0% ee) under mild conditions. This work is the first example of asymmetric iodolactonization reaction in the presence of less than a stoichiometric amount of chiral reagent.
Resumo:
A series of enolic Schiff base aluminum(III) complexes LAIR (where L = NNOO-tetradentate enolic Schiff base ligand) containing ligands that differ in their steric and electronic properties were synthesized. Their single crystals showed that these complexes are five -coordinated around the aluminum center. Their coordination geometries are between square pyramidal and trigonal bipyramidal. Their catalytic properties in the solution polymerization of racemic lactide (rac-LA) were examined. The modifications in the auxiliary ligand exhibited a dramatic influence on the catalytic performance.
Resumo:
A novel method for reagent-controlled asymmetric iodolactonization of 5-aryl-4-pentenoic acids is reported. This work uses carboxylate ion pairs combined with cinchona alkaloids as chiral sources of carboxylate anion for the first time leading to a mixture of two regio-isomeric iodolactones with moderate enantioselectivity (exo- 18.5% ee, endo-35.0% ee) under mild reaction conditions.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
聚丙交酯又称聚乳酸(PLA),是目前最重要的合成生物降解高分子之一。丙交酯有L,L-丙交酯(LLA)、D,D-丙交酯(DLA)和内消旋丙交酯(meso-LA)三种立体异构体。PLA包括全同立构、间同立构、无规立构、不均匀有规立构和嵌段立构等构型。 PLA的微观链结构在很大程度上决定了PLA的理化性质。无规立构和不均匀有规立构聚丙交酯是非晶聚合物,它们可以由meso-LA或者rac-LA(LLA和DLA的等物质的量混合物)的聚合得到;而全同立构、间同立构和嵌段立构的聚丙交酯都是可以结晶的;全同立构的聚丙交酯可由纯的DLA或者LLA聚合而成,高分子量的全同立构PLA(PLLA或者PDLA)的熔点约180ºC;但是,有趣的是,等量PDLA和PLLA形成的外消旋混合物的熔点约230ºC,这与无规的poly(rac-LA)(聚外消旋丙交酯)形成强烈对照;间同和嵌段立构聚丙交酯只是最近几年才被合成出来,目前,只能通过丙交酯的立体选择性聚合才能得到,它们的结晶性和熔点随催化剂的选择性不同变化范围很大;而就降解性能而言,非晶聚丙交酯的降解速率要高于结晶性的聚丙交酯。因为序列结构对聚丙交酯的性质有很大的影响,而聚丙交酯的序列结构可以通过丙交酯的立体选择性聚合来控制,所以,近年来,丙交酯的立体选择性聚合催化剂的开发成为了一个研究热点。 我们设计合成了一系列非手性烯醇式席夫碱-铝/锌化合物,详细的表征了它们的结构,阐明了配体取代基团与催化剂构型之间的关系;将这一系列化合物用于丙交酯的开环聚合,系统的研究了不同结构的催化剂与丙交酯的聚合动力学、立体规整度之间的关系。
Resumo:
由于具有良好的生物相容性和生物降解性,聚乳酸被广泛地应用于组织工程,药物控制释放和环境材料工程等领域。由于聚乳酸的物理、机械和降解等性质在很大程度上决定于其链序列结构,所以丙交醋的立构选择性聚合就成为了一个研究热点。本文合成了一系列无手性席夫碱一铝配合物,并将其用于外消旋丙交醋的立构选择性聚合,此外还对聚合所得的不同立构规整度的聚外消旋丙交酯进行了初步表征。具体的实验结果如下:1.合成了无手性席夫碱一乙基铝配合物(2)和席夫碱一异丙氧基铝配合物(3)。在等摩尔量异丙醇的存在条件下,配合物(2)对rac-LA的开环聚合具有良好的控制性和立体选择性。所得到的聚乳酸是结晶性的聚合物,可以形成一种PLA立体络合物。同核去偶~1HNMR和~(13)CNMR结果表明,它们都是立构嵌段型的聚合物,其平均嵌段长度为11个乳酸单元。端基分析发现:配合物(2)本身没有引发rac-LA的开环聚合,它是在原位先与异丙醇反应生成相应的烷氧基铝化合物,然后,后者再引发rac-LA的开环聚合。因此将席夫碱-异丙氧基铝配合物(3)直接用于引发rac-LA的开环聚合,也具有良好的控制性和立体选择性。2.制备了一系列的席夫碱一铝配合物(5-8)用考察席夫碱配体的性质对催化剂的催化活性和立构选择性的影响。实验结果表明,在苯环上引入较大的取代基(如叔丁基)有助于提高立构选择性,但是增加二元胺桥刚性则会使立构选择性下降。此外,还考察了聚合温度对于配合物(8)/异丙醇催化rac-LA开环聚合的影响,发现降低聚合温度有利于提高全同键接的含量。3.通过控制聚合温度得到了具有不同立构规整度的立构嵌段型聚外消旋乳酸(Pm0.77~0.88)。与PLLA和无规立构聚乳酸不同的是,这些聚外消旋乳酸都可以形成PLA立体络合物,其熔融温度也相对较高;并且随着聚外消旋乳酸的Pm值的增大,其结晶性能也相应增加。
Resumo:
手性胺是合成天然产物和手性药物的重要中间体,亚胺和烯胺的不对称催化还原是制备手性胺最直接有效的方式之一。手性有机小分子催化的亚胺不对称还原已取得了可喜的进展,但到目前为止,有机小分子催化的烯胺不对称还原,尤其是环状烯胺的不对称还原还少有报道。 本研究从手性叔丁基亚磺酰胺出发,设计并合成了一系列含有叔丁基亚磺酰基的新型脲类及硫脲类催化剂,并将其用于催化三氯硅烷对烯胺的不对称还原,尤其是1, 4-二氢吡啶酯类环状烯胺的不对称还原。通过对催化反应条件的优化,发现当添加1eq H2O时,反应收率和对映选择性明显提高,获得高达99% 的收率和88% ee,同时也取得了很好的非对映选择性(dr = 8:92)。首次实现了三氯硅烷对1, 4-二氢吡啶酯类环状烯胺的高立体选择性还原。 通过机理方面的研究,我们推测反应过程中可能是:首先,底物1, 4-二氢吡啶酯与催化剂形成氢键而被活化,当加入添加剂后,添加剂与三氯硅烷反应释放出一个质子,然后受活化的1, 4-二氢吡啶酯捕获该质子转变成更活泼的亚胺正离子的中间体。随后,在催化剂上的手性硫氧的活化下,三氯硅烷的负氢加成到受活化的亚胺正离子的中间体上,最后生成比较有利的反式产物1, 4, 5, 6-四氢吡啶乙酯。 Calalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which is an important class of intermediates for the synthesis of natural products and chiral drugs. Significant progresses have been made in organocatalytic enantioselective reduction of imines. However, asymmetric reduction of enamines, especially of cyclic enamines catalyzed by small organocatalysts has scarcely been reported. In this study, starting from chiral tert-butanesulfinamide, a series of structurally simple tert-butanesulfinyl urea and thiourea organocatalysts were developed and employed in asymmetric reduction of enamines by triclorosilane, particularly in the reduction of cyclic enamines such as Hantzsch 1, 4-dihydropyridines. During the optimization of reaction condictions, we found that the addition of one equivalent of H2O could significantly improve the yields and enatioselectivities. Under optimal condictions, 99% yield, up to 88% ee, and 8:92 diastereomeric ratio were obtained. Thus, we have for the first time realized the highly stereoselective reduction of Hantzsch 1, 4-dihydropyridines catalyzed by triclorosilane. As for the mechanism, we speculate that the Hantzsch 1, 4-dihydropyridine was firstly engaged with the catalyst through hydrogen bond. The proton released from the reaction of the additive and triclorosilane next added to one of the C=C bond to make an active iminium intermediate, which was then attacked by the nucleophlic hydrogen of HSiCl3 activated by the Lewis basic sulfinyl function of the catalyst to provide superior trans-1, 4, 5, 6-tetrahydropyridine products.
Resumo:
多羟基哌啶类化合物通常称为氮杂糖,由于与糖结构的相似性,亚胺基环醇表现出强的糖苷酶和糖基转移酶抑制活性,可调控在生物识别及酶结构控制中起到重要作用的糖蛋白的生物合成与水解。因此这类抑制剂有望成为与糖代谢紊乱有关的疾病的治疗药物,如:抗糖尿病、抗肿瘤、抗溶酶体贮积症及抗病毒感染(包括艾滋病)等药物。正是由于氮杂糖的重要生物活性及诱人的药用开发前景,近年来,有关氮杂糖及其衍生物的合成、生物活性及应用研究备受关注。 本论文探索了一系列的作为潜在的迈克加成中间体1-C-乙酰甲基/甲氧羰基甲基-5-N-取代呋喃核糖碳苷衍生物在碱的作用下先发生β-消除反应,接着发生分子内的迈克加成反应生成1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物及1-C-甲氧羰基甲基-N-取代氮杂吡喃糖碳苷衍生物的方法,该转变过程为先通过β-消除得到非环状的α/β不饱和共轭酮或酯的中间体,接着5-N-取代氨基与分子内的α/β不饱和共轭酮或酯发生分子内的1,4-亲核加成,其中,2'-酯的环加成立体选择性的得到β型1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物,而2'-酮的环加成得到立体异构体1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物。此外,该类N-取代氮杂吡喃糖碳苷衍生物进一步脱除保护基,得到了一系列新的N-取代氮杂吡喃糖衍生物,拓展了氮杂吡喃糖碳苷分子库。 中间体1-C-(2'-oxoalkyl)-5-N-alkylated glycoribofuranoside的合成是由核糖为原料,通过对其结构修饰,在C-5氮原子上先引入不同的取代基,在C-1上引入乙酰甲基或甲氧羰基甲基。C-5取代氨基的引入通过两种方法:(a) 5-取代链状脂肪氨基可由链状的伯胺直接与5-甲磺酰基发生SN2亲核取代得到;(b) 5-取代芳香氨基可通过芳香醛与C-5氨基缩合再由硼氢化钠还原得到。2'-酰基的引入通过烯丙基氧化得到:2'-酮羰基由醋酸汞和琼斯试剂氧化得到;2'-酯基由高锰酸钾氧化再碘甲烷的作用下得到。 The polyhydroxylated piperidines, commonly be called azasugars. Iminocyclitols and their derivatives have exhibited remarkable biological activity to inhibit glycosidase-processing enzymes, with resulting potential chemotherapeutic applications against diabetes, cancer, lysosomal storage disorders and viral infections including AIDS. Recently, because of the important biological activity and excellent foreground on pharmaceutical application, great attention has been attracted to the synthesis of the new derivatives and analogues. In this dissertation, 1-C-(2'-oxoalkyl)-5-N-substituted-glycoribofuranosides, which used as latent substrates for intramolecular hetero-Michael addition, were converted to 2-ester and 2-ketone aza-C-glycopyranosides by base treatment. The transformation was achieved through β-elimination to an acyclic α/β-conjugated ketone or ester, followed by an intramolecular hetero-Michael addition by the 5-N-alkylated amino group. The 2-ester cycloaddition was highly stereoselective in favor of an equatorial 1-C-substitution while the 2-ketone cycloaddition was produced a pair of stereoisomers of 2′-ketonyl aza-C-glycoside. Additionally, the resultant different N-alkylated aza-C-glycopyranosides could be further prepared for various azasugar library constructions by removal of protecting groups. Synthesis of the key intermediate 1-C-(2'-oxoalkyl)-5-N-alkylated glycoribo- furanoside involved the introduction of 5-substituted amino and 1-C-2′-oxoalkyl groups from D-ribose. The 5-alkylated amino was introduced through two methods: (a) the 5-aliphatic series amino synthesized by the nucleophilic substitution of 5-mesylate using neat ethylamine, propylamine, butylamine, and hexylamine, (b) the 5-aromatic series amino synthesized by various aromatic aldehydes with C-5 amino under NaBH4 reduction. The 1-C-2′-oxoalkyl groups were introduced through oxidation of the ally group: the 1-C-allyl group was oxidized with Hg(OAc)2 and Jones reagent to the 2-ketonyl C-glycoside; the 1-C-allyl group was oxidized with KMnO4 and CH3I/NaHCO3 to 1-C-methyl acetate glycoside.
Resumo:
Chiral ferrocene-based phosphine-imine ligands 1-3 and sulfur-imine ligand 4 were applied in the palladium-catalyzed asymmetric allylic alkylation of cycloalkenyl esters. The results revealed that the substitutents in aryl ring, ferrocenylmethyl and benzyliene position strongly affected the enantioselective induction of phosphine-imine ligands, and the most stereoselective ligand was ferrocenylphosphine-imine 1b with a nitro group in the meta-position of phenyl ring. Under the optimized condition, up to 91% (enantiomeric excesses) e.e. of cyclic alkylation product was obtained by the use of 1b. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The B3LYP hybrid density functional method has been carried Out to Study theoretically the mechanisin of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH3)(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH3)2, and in path C of each reaction, the first step is the PH3 dissociation front Pd(PH3)2 to form monophosphine complex Pd(PH3) For both reactions, path B is favored.
Resumo:
Enolic Schiff base zinc (II) complex 1 was synthesized. XRD revealed 1 was a novel crown-like macrocycle structure consisted of hexanuclear units of (LZnEt)(6) via the coordination chelation between the Zn atom and adjacent amine nitrogen atom. Further reaction of 1 with one equivalent 2-propanol at RT produced Zn-alkoxide 2 by in situ alcoholysis. Complex 2 was used as an initiator to polymerize rac-lactide in a controlled manner to give heterotactic enriched polylactide. Factors that influenced the polymerization such as the polymerization time and the temperature as well as the monomer concentration were discussed in detail in this paper.