222 resultados para SSC RF cavity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of U-238(72+) with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.
Resumo:
Beam matching relationship between the two cyclotrons(SFC and SSC) of HIRFL is briefly discussed, and the frequency band of the new RF cavity is obtained. The new cavity is simulated with the three-dimensional electromagnetic calculation code MAFIA, and the parameters of it such as frequency, Q value, shunt impedance and voltage distribution are worked out and discussed. The simulation results show that the new RF cavity can fully meet the requirements of physics design and space configuration.中文摘要:简要分析了HIRFL SFC与SSC之间的束流匹配关系,给出了新高频腔的频率范围。利用经典三维电磁场数值模拟软件MAFIA对SSC新高频腔体进行了模拟计算,得出了SSC新高频腔体的相关物理参数,并对频率范围、Q值、并联阻抗和电压分布等参数进行了分析。高频腔体的模拟计算结果完全符合SSC回旋加速器改造的物理设计及空间结构要求。
Resumo:
An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB inter...
Resumo:
In order to realize high energy density physics and plasma physics research at HIRFL-CSR, a magnetic alloy (MA)-loaded cavity has been studied. According to the theoretical calculation and simulation for the MA-loaded cavity, we achieved a better result. The MA-loaded cavity had a higher mu Q f value, with a higher shunt impedance and a higher accelerating gradient. The accelerating gradient was about 95 kV/m at 1.8003 MHz, 130 kV/m at 0.9000 MHz. Compared with the ferrite-loaded cavities that are used at HIRFL-CSR, with about 10 kV/m accelerating gradient, the MA-loaded cavity obviously has an advantage. The results of the theoretical calculation and the simulation, which meet the design requirements are in good agreement.
Resumo:
在本论文中,对一种新型高性能同步加速器无调谐高频腔体进行了深入的研究。该高频腔体基于一个T型桥全通域网络,在铁氧体加载的高频谐振腔体上实现宽频带高频功率激励。虽然,新型无调谐高频腔体与常规同调型高频腔体相比,体积更小,结构更加简单。但是通过研究和实验证明,新型无调谐高频腔体可以在很宽频率通带内,激励比常规同调型高频腔体更高的高频电压,因而具有更加良好的性能。加速器高频系统研究通常分为两个领域:从加速器物理观点出发的纵向束流动力学研究和电子工程技术领域的高频电子技术研究。在本论文中,首先介绍了带电粒子高频加速的基本原理。然后,详细研究和阐述了同步加速器新型无调谐型和常规同调型两种高频腔体的性能以及高频腔体加载的铁氧体材料的特性。再次,为了更好地研究高频腔体及其相应的参数,对束流纵向动力学理论进行了详细的阐述。最后,为兰州重离子加速器冷却储存环HIRFL-CSR的实验环CSRe设计了一个新型高性能同步加速器无调谐高频腔体,利用新型无调谐高频腔体作为平顶波腔体使用,实现同步加速器高频平顶波加速技术,并且可以提高HIRFL-CSR的实验环CSRe中的具有大动量散度的次级束流的俘获效率。
Resumo:
The beam matching status between the two isochronous cyclotrons in the Heavy Ion Research Facility at the Lanzhou-Cooling Storage Ring (HIRFL-CSR) is described. Several methods which can be used to accomplish 100% matching are proposed. By comparing of them, the best method is determined. The advantage due to this method is discussed.
Resumo:
A high current RFQ (radio frequency quadrupole) is being studied at the Institute of Modern Physics, CAS for the direct plasma injection scheme. Shunt impedance is air important parameter when designing a 4-rod RFQ cavity, it reflects the RF efficiency of the cavity, and has a direct influence on the cost of the structure. Voltage distribution of a RFQ cavity has an effect on beam transmission, and particles would be lost if the actual voltage distribution is not as what, it should be. The influence of cell length, stern thickness and height on Shunt impedance and voltage distribution have been studied, in particular the effect of projecting electrodes has been investigated in detail.
Resumo:
An improved electromechanical model of the RF MEMS (radio frequency microelectromechanical systems) switches is introduced, in which the effects of intrinsic residual stress from fabrication processes, axial stress due to stretching of beam, and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model. A semi-analytical method is developed to calculate the behavior of the RF MEMS switches. Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared, and the corresponding analysis with the dimensionless numbers is conducted too. The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.
Resumo:
This paper reports a flume experiment of flow and sediment movement in a cavity. The flow velocity, sediment concentration and the mechanism of hydraulic sorting in the circulation flow are discussed. The quantity and patterns of sediment deposition in the circulation area are studied as well.
Resumo:
For the design of radio frequency micro-electro-mechanical systems (RF MEMS) switches, the reliability issue becomes increasingly important. This paper represents some failure phenomena of doubly supported capacitive RF MEMS switches that include observable destruction failure and directly measurable parameter degradation obtained from the actuating-voltage testing and scanning electron microscope (SEM) observation. The relevant failure modes as well as their failure mechanisms are identified.
Resumo:
With the recent rapid growth of Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches, there has developed an emergent requirement for more accurate theoretical models to predict their electromechanical behaviors. Many parameters exist in the analysis of the behavior of the switch, and it is inconvenient for further study. In this paper, an improved model is introduced, considering simultaneously axial stress, residual stress, and fringing-field effect of the fixed-fixed bridge structure. To avoid any unnecessary repetitive model tests and numerical simulation for RF MEMS switches, some dimensionless numbers are derived by making governing equation dimensionless. The electromechanical behavior of the fixed-fixed bridge structure of RF MEMS switches is totally determined by these dimensionless numbers.
Resumo:
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.
Resumo:
The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.
Resumo:
The diffraction and reflection of planar shock wave around a dusty square cavity is investigated numerically, which is embedded in the net bottom surface of a two-dimensional channel, and the induced gas-particle two-phase now. The wave patterns at different times are obtained for three different values of the particle diameter. The computational results show that the existence of particles affects appreciably the shock wave diffraction and cavity flow.