181 resultados para SIGHT VELOCITY DISTRIBUTIONS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the PDPA (Phase Doppler Particle Analyzer) measurement technology, the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function, and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28 degrees and 39 degrees, and the mean lift-off angle ranges from 30 degrees to 44 degrees. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11, and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew, the horizontal velocity of particles at 20 mm height varies widely, and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles. Numerical analysis is performed for particle velocity distribution with a discrete particle model. The probability distributions of resultant particle velocity in the impact-entrainment process, particle horizontal and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a log-normal function, and that of impact angle comply with an exponential function. The probability distribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern. In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further analysis shows that the probability density function of the vertical velocity of ascending particles is similar to the right-hand part of a normal distribution function, and a general equation is acquired for the probability density function of non-dimensional vertical velocity of ascending particles which is independent of diameter of saltating particles, wind strength and height. These distributions in the present numerical analysis are consistent with reported experimental results. The present investigation is important for understanding the saltation state in wind-blown sand movement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation of Benard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The velocity fields in the vertical cross-section are obtained by PIV. Flow patterns and/or temperature distributions on the horizontal interface are displayed by using thermal color liquid crystal (TLC), and the velocity distributions on the interface were also obtained with the help of the serial particle image of TCL. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers, and the convection styles are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fluid flow associated with micro and meso scale devices is currently of interest. Experiments were performed to study the fluid flow in meso-scale channels. A straight flow tube was fabricated with 1.0x4.0mm^2 in rectangular cross section and 200mm in length, which was made of quartz for flow visualization and PIV measurements. Reynolds numbers were ranged from 311 to over 3105. The corresponding pressure drop was from 0.65KPa to over 16.58KPa between the inlet and outlet of the tube. The micro PIV was developed to measure the velocity distribution in the tube. A set of microscope object lens was mounted ahead of CCD camera to obtain optimized optical magnification on the CCD chip. The velocity distributions near the outlet of the tube were measured to obtain full-developed flow. A CW laser beam was focused directly on the test section by a cylinder lens to form a small light sheet. Thus, high power density of light was formed on the view region. It is very important to the experiment while the velocity of the flow reaches to a few meters per second within millimeter scale. In this case, it is necessary to reduce exposure time to microseconds for PIV measurements. In the present paper, the experimental results are compared with the classical theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma-arc technology was developed to dispose of chemical wastes from a chemical plant by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A pilot plant system with this technology was constructed to destroy two types of chemical wastes. The system included shredding, mixing, and feeding subsystems, a plasma-arc reactor of 150 kW, an off-gas burning subsystem, and a scrubbing subsystem. The additives (CaO, SiO2, and Fe) were added into the reactor to form vitrified slag and capture the hazardous elements. The molten slag was quickly quenched to form an amorphous glassy structure. A direct current (DC) experimental facility of 30kW with plasma-arc technology was also set up to study the pyrolysis process in the laboratory, and the experimental results showed the cooling speed is the most important factor for good vitrified structure of the slag. According to previous tests, the destruction and removal efficiency (DRE) for these chemical wastes was more than 99.999%, and the polychlorinated biphenyls (PCBs) concentration in the solid residues was in the range of 1.28 to 12.9mg/kg, which is far below the Chinese national emission limit for the hazardous wastes. A simplified electromagneto model for numerical simulation was developed to predict the temperature and velocity fields. This model can make satisfactory maximum temperature and velocity distributions in the arc region, as well as the results by the magneto hydrodynamic approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral winds and electric fields in the ionospheric F layer play important roles in the variations of the ionosphere, and also affect the thermospheric circulation via the close coupling between the ionosphere and the thermosphere. By now, the neutral winds and electric drifts are generally observed with ground-based Fabry-Perot interferometers (FPI) and incoherent scatter radars (ISR), rockets, and satellite-borne instrument. Based on the servo theory, the ionospheric equivalent winds, which include the information of both the neutral winds and electric fields, can be derived from these characteristic parameters observed by ionosondes. This indirect derivation has potential values in climatological researches and space weather forecast. With the data set of the incoherent scatter radar observations at Millstone Hill, USA, from 1976 to 2006, we statistically analyzed the climatological variations of the vertical component of the equivalent winds (VEWs) over Millstone Hill, which are derived from the ionospheric key parameters (the peak electron number density and peak height of the F2 layer, NmF2 and hmF2) on the basis of the servo theory, Liu's method, and measurements from the ion line-of-sight velocity as well. The main results of this analysis are summarized as follows: (1) The values of VEWs over Millstone Hill during nighttime are stronger than in the daytime, and the upward drift dominates most of the day. In 1993, Hagan found that the component of the neutral winds in the magnetic meridion in daytime is weaker than during nighttime under both solar maximum and minimum conditions; he also found that the equatorward winds dominate most of the day. Both results suggest that the thermosphere in Millstone Hill is modulated by the aurorally driven high-latitude circulation cell; that is, during geomagnetic quiet periods, the average auroral activity is strong enough to drive thermospheric circulation equatorward for most of the day at Millstone Hill. Moreover, since ion drag is the strongest during daytime when F region densities are enhanced by photoionization, the wind speeds are smaller during the daytime than in the nighttime. (2) There is equinoctial symmetry in VEWs at Millstone Hill. The amplitudes and phases of VEWs in spring are quite similar to those in autumn. In contrast, the nighttime upward drift in winter is weaker than in summer and the difference becomes more significant with increasing solar activity. This solstice asymmetry indicates that, the aurorally driven circulation in the northern hemisphere at Millstone Hill latitude is weaker in winter due to arctic darkness, because the subsolar point is in the southern hemisphere. (3) The comparison of the VEWs derived from three methods, i.e., the servo theory, Liu's method, and the ISR ion line-of-sight velocity measurements, indicates that the amplitudes and main phase tendencies of these VEWs accord well with each other during nighttime hours. However, the case in the daytime is relatively worse. This daytime discrepancy can be explained in terms of the effects of photochemical processes and the choices of the servo constants. A larger servo constant gives a stronger plasma drift in daytime. Therefore, this study tells how important to choose a suitable constant for deriving VEWs at Millstone Hill.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The parameters at the symmetrical axis of a cylindrical plume characterize the strength of this plume and provide a boundary condition which must be given to investigate the structure of a plume. For Newtonian fluid with a temperature-and pressure-dependence viscosity, an asymptotical solution of hydrodynamic equations at the symmetrical axis of the plume is found in the present paper. The temperature, upward velocity and viscosity at the symmetrical axis have been obtained as functions of depth, The calculated results have been given for two typical sets of Newtonian rheological parameters. The results obtained show that the temperature distribution along the symmetrical axis is nearly independent of the theological parameters. The upward velocity at the symmetrical axis, however, is strongly dependent on the rheological parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the influence of Coulomb potential for photoionization of hydrogen atoms in an intense laser field with elliptical polarization. The total ionization rates, photoelectron energy spectra, and photoelectron angular distributions are calculated with the Coulomb-Volkov wave functions in the velocity gauge and compared with those calculated in the length gauge as well as those calculated with the Volkov wave functions. By comparing the results obtained by the Coulomb-Volkov and Volkov wave functions, we find that for linear polarization the influence of Coulomb potential is obvious for low-energy photoelectrons, and as the photoelectron energy and/or the laser intensity increase, its influence becomes smaller. This trend, however, is not so clear for the case of elliptical polarization. We also find that the twofold symmetry in the photoelectron angular distributions for elliptical polarization is caused by the cooperation of Coulomb potential and interference of multiple transition channels. About the gauge issue, we show that the difference in the photoelectron angular distributions obtained by the velocity and length gauges becomes rather obvious for elliptical polarization, while the difference is generally smaller for linear polarization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodissociation dynamics Of C2H5SH, i-C-3-H7SH and n-C3H7SH at 243.1 nm were investigated using velocity map ion-imaging method. H-atom photolysis products were detected by a (2 + 1) resonance enhanced ionization scheme. Both the angular distribution and translational energy distribution of the H-atom elimination processes were determined from the ion images of the H-atom products. The experimental results indicate that the H-atom eliminations from these molecules are mainly direct and fast dissociation processes from a repulsive potential energy state. And a more statistical dissociation process that likely occurs oil the ground state via internal conversion has also been observed. Dissociation energies of the S-H bonds are also derived from the H-atom product translational energy distributions. (C) 2002 Elsevier Science B.V. All rights reserved.