498 resultados para SEBS COPOLYMER
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Three triblock copolymers of poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weights and one diblock copolymer of poly[styrene-b-(ethylene-co-butylene)] (SEB) were used to compatibilize high density polyethylene/syndiotactic polystyrene (HDPE/sPS, 80/20) blend. Morphology observation showed that phase size of the dispersed sPS particles was significantly reduced on addition of all the four copolymers and the interfacial adhesion between the two phases was dramatically enhanced. Tensile strength of the blends increased at lower copolymer content but decreased with increasing copolymer content. The elongation at break of the blends improved and sharply increased with increments of the copolymers. Drop in modulus of the blend was observed on addition of the rubbery copolymers. The mechanical performance of the modified blends is strikingly dependent not only on the interfacial activity of the copolymers but also on the mechanical properties of the copolymers, particularly at the high copolymer concentration. Addition of compatibilizers to HDPE/sPS blend resulted in a significant reduction in crystallinity of both HDPE and sPS. Measurements of Vicat softening temperature of the HDPE/sPS blends show that heat resistance of HDPE is greatly improved upon incorporation of 20 wt% sPS.
Resumo:
Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.
Resumo:
The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
The surface morphology evolution of thin poly(styrene-block-ethylene/butylenes-block-styrene) (SEBS) triblock copolymer films as a function of the copolymer concentration was investigated by means of dynamic mode atomic force microscopy. At a relatively low copolymer concentration (0.025% w/v), the periodically orientated stripes were observed. This kind of surface patterning produced in the spin-coating process has not been reported in the literature before. It has been shown by our experiment that a shearing and stretching field can cause flexible polymer coils or aggregates to orientate during the spin coatings At a copolymer concentration of 0.05% w/v, SEBS molecule aggregates form network structures in the whole film. With further increase of the copolymer concentration, a continuous film with a microphase-separated structure was visualized.
Resumo:
本工作采用熔融反应接枝的方法将(3-异氰酸酯基-4-甲基)苯氨基甲酸-2-丙烯酯(TAI)引入到聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物(SEBS)上,以实现SEBS的功能化。红外光谱表明TAI已经成功接枝到SEBS上。GPC测试表明接枝后SEBS具有高的分子量与宽的分子量分布。DMA分析证明,接枝后聚(乙烯-co-丁烯) (PEB)段的玻璃化转变提高。对未参与接枝的单体的分析表明,单体TAI是个不容易自聚的单体,并对接枝过程的机理进行了研究。 为了提高TAI的存储稳定性和解决反应过程中的毒性大的问题,采用己内酰胺为封端剂对TAI中的异氰酸酯进行了封端。红外光谱和核磁共振结果表明,己内酰胺封端的TAI(BTAI)中含有双键和封闭型异氰酸酯结构,不存在着活泼的异氰酸酯。红外光谱结果表明,在高温下BTAI可以重新产生活泼的异氰酸酯基团。DSC与TG/DTA研究证明,BTAI的初始解离温度大约为135 C。采用熔融反应接枝的方法将BTAI接枝到SEBS和乙烯-辛烯共聚物(POE)分子上。研究表明,接枝率随着单体含量或引发剂含量的增加而增加。接枝以后的SEBS与POE的剪切变稀行为都比未接枝的SEBS与POE要明显。 利用BTAI功能化的SEBS和POE两种弹性体,通过熔融反应共混方法制备了PA6合金。两种弹性体与PA6共混物的红外光谱和流变行为的研究表明,在反应共混中形成了新的接枝共聚物。共混物的脆断面的场发射扫描电镜照片表明,共混物形成一种海-岛结构,而反应共混物的具有更均匀的粒子分散性,更小的粒子尺寸。PA6/SEBS-g-BTAI共混的透射电镜照片说明,共混物中形成了一种以PS为核-PEB为壳的核壳结构。与相应的物理共混物相比,通过反应共混制备的PA6合金(PA6/SEBS-g-BTAI合金和PA6/POE-g-BTAI合金)的拉伸强度、杨氏模量得到了提高。两种反应共混物的缺口冲击强度得到了非常明显的提高,合金材料的缺口冲击强度可以达到1000 J/m 以上。共混物中弹性体对PA6的结晶起到了成核的作用,结晶温度提高。形成的共聚物阻碍了PA6的分子链的运动,使得PA6的结晶温度下降。 本工作还利用上述制备的POE-g-BTAI和SEBS-g-BTAI两种功能化的弹性体与聚对苯二甲酸丁二醇酯(PBT)进行共混。研究表明,在反应共混过程中PBT中的反应基团与释放出的异氰酸酯发生反应,生成了新的共聚物。通过共混物的脆断面的FESEM图片可以看到,POE与PBT的共混物中,POE以球状粒子分散在PBT中,并且反应共混物的粒子分散均匀,粒子尺寸变小。与POE/PBT共混不同的是,在PBT与SEBS共混过程中,二者形成了交错结构,而反应共混在较低含量就形成了交错结构。POE与PBT反应共混物的缺口冲击强度得到了很大的提高,冲击强度可以达到1100 J/m以上,而PBT与SEBS的反应共混物的冲击强度改变不大。相对于物理共混物,两种弹性体与PBT的反应共混物的拉伸强度与拉伸模量都得到了提高。弹性体的加入提高了PBT的结晶温度,反应共混物的结晶温度低于物理共混物的结晶温度,说明弹性体的加入起到了PBT的成核剂的作用,生成的共聚物亦阻碍了PBT的分子链的移动。 关键词:聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物;乙烯-辛烯共聚物;封闭型异氰酸酯;反应加工;聚酰胺6;聚对苯二甲酸丁二醇酯
Resumo:
Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that Of rod-coil diblock copolymers.
Resumo:
The influence of the concentration of a nucleating agent (NA), namely 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS), on the gamma phase content in a propylene/ethylene copolymer was investigated by means of Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Small- Angle X-ray Scatter (SAXS) and Polarized Optical Microscopy (POM).
Resumo:
The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture.
Resumo:
We have studied the self-assembly of the ABA triblock copolymer (P4VP-b-PS-b-P4VP) in dilute solution by using binary block-selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self-assembly of the copolymer. It was found that the copolymer (P4VP(43)-b-PS366-b-P4VP(43)) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively.
Resumo:
The morphologies and structures for the thin film of blend systems consisting of two asymmetric polystyrene-block-polybutadiene (SB) diblock copolymers induced by annealing in the vapor of different solvents, namely, cyclohexane, benzene, and heptane, which have different selectivity or preferential affinity for a certain block, were investigated by tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results revealed that even a slight preferential affinity of good solvent for one block would strongly alter the morphology of the blend thin film.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
This paper describes the formation of fibril like aggregates from the self-assembly of block copolymer mixture (polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-b-poly(acrylic acid) (PS-b-PAA)) via interpolymer hydrogen bonding in nonselective solvent. The hydrogen bonding between P4VP and PAA in chloroform leads to the formation of complex. When all the pyridine units in P4VP were all hydrogen bonded to acrylic acid in PAA, the formed complex is insoluble, resulting in the formation of spherical micellar aggregates and nanorods.
Resumo:
The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.