25 resultados para S-matrix theory
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.
Resumo:
General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.
Resumo:
In this paper, we design resonant reflection grating filters employing the second diffracted orders as the leaky modes, then analyze the bandwidth of the reflection peak and the electric field distributions inside the wavegude under resonance. The numeric calculation confirms that ultra-narrow resonant reflection peaks can be observed in these structures. At the same time, strong electric field enhancement appears under resonance. It provides a new approach to diversify the resonant reflection filters and may open a new way to the realization of ultra-narrow bandwidth filters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
We study the entanglement degree of electron pairs emitted from an s-wave Superconductor, which Couples to two normal leads via a single-level quantum dot. Within the framework of scattering matrix theory. the concurrence is used to quantify the entanglement. And the result shows that the entanglement degree is generally influenced by the initial separation of the two electrons in a Cooper pair and the normal transmission eigenvalues T-1, T-2. But it is only determined by the eigenvalues in the tunnelling limit, T-1. T-2 << 1, what is more. it is measurable. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.
Resumo:
The excitation functions of elastic scattering proton which were measured with inverse kinematics of elastic resonance scattering reactions in GANIL and MSU have been fitted by the multi-energy level R-matrix theory. The final result shows that the new energy levels order for nucleus N-11 should be 1/2(+), 1/2(-), 5/2(+), 3/2(+), 3/2(-), 5/2(+), 7/2(-), which is consistent with the experimental results of Be-11 (the mirror nucleus of N-11) and the theoretical calculation of N-11 with GCM theory.
Resumo:
HIRFL is a tandem cyclotron complex for heavy ion. On the beam line between SFC and SSC, there is a stripper. Behind it, the distribution of charge states of beam is a Gauss distribution. The equilibrium charge state Q_0 is selected by 1BO2(a 50° dipole behind the stripper) and delivered to SSC. One of two new small beam line (named SLAS) after 1B02 will be builded in or der to split and deliver the unused ions of charge states (Q_0 ± n) to aspecific experimental area. Q_0 ± n ions are septumed and separated from initial(Q_0) ion beam by two septum magnets SM1, SM2. The charge state selected by SM1 will be Q_0 ± 1(6 ≤ Q_0 < 17), Q_0 ± 2(17 ≤ Q_0 < 33) and Q_0 ± 3 (Q_0 ≥ 33) forming a beam in one of the two possine new beam line with the stripping energy of (0.2 to 9.83 Mev/A), an emittance of 10π mm.mrad in the two transverse planes and an intensity ranging from 10~(11) pps for z ≤ 10 to some 10~5 pps for the heaviest element. Behind SM2, a few transport elements (three dipoles and seven qudrupoles) tra nsport Q_0 ± n beam to target positions T1, T2 (see fig. 1) and generate small beam spots (φ ≤ 4mm, φ ≤ 6mm). The optics design of the beam line has been done based on SLAC-75 (a first and second - order matrix theory). beam optics calculation has been worked out with the TRANSPORT program. The design is a very economical thinking, because without building a new accelerator we can obtain a lower energy heavy ion beam to provide for a lot of atomic and solid state physical experiments
Resumo:
A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.
Resumo:
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.
Resumo:
In this paper, a theory is developed to calculate the average strain field in the materials with randomly distributed inclusions. Many previous researches investigating the average field behaviors were based upon Mori and Tanaka's idea. Since they were restricted to studying those materials with uniform distributions of inclusions they did not need detailed statistical information of random microstructures, and could use the volume average to replace the ensemble average. To study more general materials with randomly distributed inclusions, the number density function is introduced in formulating the average field equation in this research. Both uniform and nonuniform distributions of inclusions are taken into account in detail.
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.
Resumo:
Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.