23 resultados para Retaining
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating (RI) protein possessing multiple biological and pharmacological activities. Its major action is inhibition of human immunodeficiency virus (HIV) replication but the mechanism is still elusive. All evidences showed that this action is related to its RI activity. Previous studies found that TCS mutants with reduced RI activity simultaneously lost some anti-HIV activity. In this study, an exception was demonstrated by two TCS mutants retaining almost all RI activity but were devoid of anti-HIV-1 activity. Five mutants were constructed by using site-directed mutagenesis with either deletion or addition of amino acids to the C-terminal sequence. Results showed that the RI activity of mutants with C-terminal deletion mutants (TCSC2, TCSC4, and TCSC14) decreased by 1.2-3.3-fold with parallel downshifting of its anti-HIV-1 activity (1.4-4.8-fold). Another two mutants, TCSC19aa and TCSKDEL having 19 amino acid extension and a KDEL signal sequence added to the C-terminal sequence, retained all RI activity but subsequently lost most of the anti-HIV-1 activity. These findings suggested that ribosome inactivation alone might not be adequate to explain the anti-HIV action of TCS. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The hemizona assay (HZA) in Rhesus monkeys was employed to study the correlation of zona-binding ability with sperm motility or with naturally developing oocytes at various maturational stages. Oocytes from unstimulated ovaries were retrieved within 2 hr from monkeys sacrificed for vaccine production (in reproductive season, but with their menstrual cycles not determined). Oocytes were divided into four groups based on their morphological maturation: 1) Oocytes surrounded by more than one cumulus layer (MC); 2) Oocytes retaining intact germinal vesicle nuclei (GV); 3) Oocytes with germinal vesicle breakdown showing distinct perivitelline space (PVS); and 4) Oocytes extruding the first polar body (PB1). The mean numbers of sperm bound to hemizona for PBI, PVS, GV, and MC groups were 132.9 +/- 12.0, 71.5 +/- 10.1, 36.1 +/- 4.0, and 20.1 +/- 2.9 (Mean +/- SE), respectively. The four groups showed significant differences from each other in sperm/egg binding ability (P < 0.01). The number of bound sperm significantly increased with oocyte maturation. The present study also showed that zona-binding ability was also affected by sperm motility. For sperm with 67.7% motility and sperm with 31.2% motility, the average numbers of bound sperm were 43.5 +/- 2.2 and 25.3 +/- 2.9 (Mean +/- SE), respectively. There was significantly higher binding ability for sperm with higher motility (P < 0.01). The results suggest that: 1)The rhesus monkey model can serve as a very sensitive model for studying sperm/egg interaction by HZA; 2) Sperm motility positively correlated with sperm/egg binding; and 3) Sperm/egg binding ability increases with oocyte maturation. The binding ability is highest when oocytes matured to the PB1 stage, which is also the best opportunity for fertilization. This is strong evidence for the ''zona maturation'' hypothesis. (C) 1994 Wiley-Liss, Inc.
Resumo:
Habitat use by wintering Ruddy Shelduck (Tadorna ferruginea) in Lijiang Lashihai Lake of southwest China was studied from 1 November 1999 to 29 April 2000. We divided habitats into five types-deep water, shallow water, mudflat, grassland and farmland. Shallow water and grassland, with rich food and easily accessible water, were preferred by wintering Ruddy Shelducks, Farmland was preferred in mid-winter but avoided in early winter and late winter. Even in mid-winter, the feeding Ruddy Shelduck on farmland were not equally distributed in fields and preferred wet fields (just irrigated) and avoided dry fields. In dry fields, the distances to water sources had great impact on the feeding distribution. Mudflats were only selected in later winter, coinciding with the growth of water-weeds. Deep-water areas were always avoided. Prohibition of human disturbance and retaining shallow water areas and grassland are important measures to mitigate conflict between Ruddy Sheldruck and local people.
Resumo:
Very low doses (0.00001 mg/kg) of the alpha-2 adrenergic antagonist, yohimbine, improved working memory performance in a subset of aged monkeys. Improvement appeared to result from increased norepinephrine (NE) release onto postsynaptic alpha-2 adrenoceptors, as the response was blocked by the ''postsynaptic'' alpha-2 antagonist, SKF104078. Cognitive-enhancing effects of low dose yohimbine treatment may depend on aged animals retaining an intact, endogenous NE system. In contrast to yohimbine, the alpha-2 agonist, clonidine, has improved working memory in air aged animals examined. In the present study, clonidine's beneficial effects were also blocked by the postsynaptic antagonists SKF104078 and SKF104856, suggesting that clonidine acts by directly stimulating postsynaptic alpha-2 adrenoceptors. Beneficial doses of clonidine (0.01 mg/kg) and yohimbine (0.00001 mg/kg) were combined to see if they would produce additive effects on memory enhancement. This strategy was successful in young monkeys with intact NE systems but was not effective in the aged monkeys. These findings demonstrate that drugs that indirectly stimulate postsynaptic alpha-2 receptors by increasing NE release are not as reliable in aged monkeys as directly acting agonists that can replace NE at postsynaptic alpha-2 receptors.
Resumo:
Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.
Resumo:
Intertidal seaweeds experience periodical desiccation and rehydration to different extents due to the tidal cycles and their vertical distributions. Their photosynthetic recovery process during the rehydration may show different patterns among the seaweeds from different zonations or depths at intertidal zone. In this study 12 species of seaweeds collected from the upper, middle, lower and sublittoral zones were examined. The relationship of the photosynthetic recovery to vertical distribution was assessed by comparing their patterns of photosynthetic and respiratory performances after rehydration following desiccation. Both the photosynthesis and dark respiration declined during emersion, showing certain degrees of recovery after re-immersion into seawater for most species, but the extents were markedly different from one species to the other. The species from upper intertidal zone after being rehydrated for 1 hour, following 2 hours of desiccation, achieved 100 % recovery of their initial physiological activity, while most of the lower or sublittoral species did not achieve full recovery. It is the ability to withstand desiccation stress (fast recovery during rehydration), but not that to avoid desiccation (water retaining ability) that determines the distribution of intertidal seaweeds. Such physiological behavior during rehydration after desiccation reflects the adaptive strategy of intertidal seaweeds against desiccation and their capability of primary production in the process of rehydration.
Resumo:
Mature eggs of allotetraploid carp were activated by inactive sperm or crossed with normal sperms of common carp (Cyprinus carpio), crucian carp (Carassius auratus), Chinese blunt snout bream (Megalobrama amblycephala), Hemiculter leucisculus and Pseudorasbora parva. Chromosome counts showed that all offspring of these crosses presented a mode number of 200 chromosomes (4n = 200), and their morphological traits are much like maternal. Microsatelite marker and RAPD patterns between allotetraploid maternal and its offspring, reproduced from different paternal species, were identical. Cytological, morphological and molecular evidences suggested that allotetraploid carp female nucleus would not fuse with any male nucleus and its reproduction mode might be gynogenesis and therefore their offspring are retaining their tetraploidy and give origin to clonal individuals.
Resumo:
The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.
Resumo:
采用土柱法研究了不同PAA施入量对3种黄土高原主要土壤类型(黄绵土、黑垆土和塿土)的持水性能、土壤饱和导水率和土壤蒸发量的影响,以进一步阐明PAA的保水和蒸发作用。结果表明,施入PAA提高了土壤的持水性能。在未加入PAA之前黑垆土的持水性能最低,塿土的最高,黄绵土的次之;加入PAA后,黑垆土的持水能力显著增加,几乎为对照的2倍,塿土和黄绵土也都比对照高。土壤的供水能力随PAA用量的增加而增强,不同土壤类型之间表现为:塿土>黑垆土>黄绵土。未加入PAA时,3种土壤饱和导水率大小为:塿土>黑垆土>黄绵土;加入PAA后,3种土壤的饱和导水率都降低,且基本随PAA用量的增加而降低。在一定水分条件下,PAA的施入提高了土壤的抗蒸发性能,随PAA用量的增加,塿土和黑垆土的土壤蒸发量增加,但都低于对照,而黄绵土的土壤蒸发量随PAA用量的增加而降低。其中施PAA54.5 mg/kg的塿土、黑垆土和施PAA225.8 mg/kg的黄绵土与对照相比,土壤蒸发量分别减少了44.0%,44.6%和30.6%。
Resumo:
An arch-shaped beam with different configurations under electrostatic loading experiences either the direct pull-in instability or the snap-through first and then the pull-in instability. When the pull-in instability occurs, the system collides with the electrode and adheres to it, which usually causes the system failure. When the snap-through instability occurs, the system experiences a discontinuous displacement to flip over without colliding with the electrode. The snap-through instability is an ideal actuation mechanism because of the following reasons: (1) after snap-through the system regains the stability and capability of withstanding further loading; (2) the system flips back when the loading is reduced, i.e. the system can be used repetitively; and (3) when approaching snap-through instability the system effective stiffness reduces toward zero, which leads to a fast flipping-over response. To differentiate these two types of instability responses for an arch-shaped beam is vital for the actuator design. For an arch-shaped beam under electrostatic loading, the nonlinear terms of the mid-plane stretching and the electrostatic loading make the analytical solution extremely difficult if not impossible and the related numerical solution is rather complex. Using the one mode expansion approximation and the truncation of the higher-order terms of the Taylor series, we present an analytical solution here. However, the one mode approximation and the truncation error of the Taylor series can cause serious error in the solution. Therefore, an error-compensating mechanism is also proposed. The analytical results are compared with both the experimental data and the numerical multi-mode analysis. The analytical method presented here offers a simple yet efficient solution approach by retaining good accuracy to analyze the instability of an arch-shaped beam under electrostatic loading.
Resumo:
海拔梯度造成的环境异质性,如崎岖的地形、复杂的植被结构以及花期延迟等可能会极大地影响到物种的形态和遗传变异格局。理解物种形态和遗传变异的海拔格局对于物种多样性的管理和保护是非常重要的。尽管植物群体遗传学是一个飞速发展的研究领域,然而与海拔相关的形态变异、遗传变异及群体间遗传差异的研究却很少。到目前为止,还不清楚遗传变异与海拔之间是否必然的相关性。 川滇高山栎是一种重要的生态和经济型树种,广泛分布于中国西南的四川、西藏、贵州和云南省的高海拔地区,在保持水土、调节气候方面起着十分重要的作用。尽管主要受阳光限制而仅分布于阳坡,但其海拔梯度范围较大,表明川滇高山栎对不同的环境具有很强的适应性。本文通过叶型及生理响应、微卫星分子标记和扩增性片段长度多态性方法,试图探索川滇高山栎叶沿海拔梯度的形态和生理响应及其沿海拔梯度的遗传变异格局,为川滇高山栎的保护和利用提供进一步的遗传学理论依据和技术指导。 对叶形、含氮量及碳同位素的试验结果表明,平均比叶面积、气孔密度、气孔长度和气孔指数等气孔参数随海拔的升高呈非线性变化。在海拔大于2800 m时,川滇高山栎的比叶面积、气孔长度和气孔指数都随海拔升高而降低,但是在海拔小于2800 m时,这些指标都随海拔的升高而增大。相对而言,单位叶面积的含氮量和碳同位素则表现出相反的变化模式。另外,比叶面积是决定碳同位素沿海拔梯度变化的最重要参数。本研究结果表明,海拔2800 m附近是川滇高山栎生长和发育的最适地带,在这里生长的植物叶片厚度更薄、气孔更大、叶碳同位素值更小。 利用六对微卫星引物对五个不同海拔川滇高山栎群体遗传多样性进行研究,结果表明,群体内表现出较高的遗传多样性,平均每位点等位基因数11.33个,平均期望杂合度达0.820。群体间差异较小,分化仅为6.6%。聚类分析也并没有显示出明显的海拔格局。然而低频率等位基因却与海拔呈显著性正相关(R2=0.97, P < 0.01),表明在高海拔处,川滇高山栎以更多的稀有基因来适应恶劣的环境条件。本试验结果表明由海拔梯度形成的选择性压力对川滇高山栎群体的遗传变异影响并不明显。 为了进一步探讨川滇高山栎群体遗传变异与海拔之间的相互关系,我们还对其进行了扩增性片段长度多态性分析。结果表明:(1)随海拔的升高(从群体WL2到群体WL5),群体内遗传变异降低,而群体间遗传差异增加;(2)低海拔群体WL1表现出最低的遗传变异性(HE = 0.181),同时与其余四个群体间呈现出最大的遗传差异性(平均FST = 0.0596);(3)在除去低海拔群体WL1后,Mantel检测表明群体间遗传距离与海拔距离之间表现出正相关性。另外,研究结果还表明,遗传变异受生境条件(过度的湿热环境)及人为干扰(火烧、砍伐和放牧)的影响,这一点至少在低海拔群体WL1上发生了作用。 通过叶形态、生理及DNA分子水平的研究,结果表明叶形态特征和碳同位素与海拔紧密相关,与海拔之间呈非线性变化,海拔2,800 m附近是川滇高山栎生长和发育的最适地带。海拔梯度在一定程度上会影响到川滇高山栎群体的遗传变异结构,但在这样一个狭窄的地理分布区域里,这种影响并不足以导致群体间较大的遗传分化。同时生境条件及人为干扰也是影响遗传变异的限制性因子,不容忽视。 Altitudinal gradients impose heterogeneous environmental conditions, such as rugged topography, a complex pattern of vegetation and flowering delay, and they likely furthermore markedly affect the morphological and genetic variation pattern of a species. Understanding altitudinal pattern of morphological and genetic variation at a species is important for the management and conservation of species diversity. Although plant population genetics is a fast growing field of research, there are only few recent investigations, which analyzed the genetic differentiation and changes of intra-population variation along altitudinal gradients. At present, it is still unclear whether there are some common patterns of morphological and genetic variation with altitude. Quercus aquifolioides Rehder & E.H. Wilson, which is an important ecological and economical endemic woody plant species, is widely distributed in the Yunnan and Sichuan provinces, Southwest China. Its large range of habitat across different altitudes implies strong adaptation to different environments, although it is mainly restricted to sunny, south facing slopes. It plays a very important role in preventing soil erosion, soil water loss and regulating climate, as well as in retaining ecological stability. In this paper, we tried to understand the altitudinal pattern of morphological and genetic variation along altitudinal gradients through the experiments of leaf morphological and physiological responses, microsatellite analysis and AFLP markers. In leaf morphological and physiological responses experiment, we measured leaf morphology, nitrogen content and carbon isotope composition (as an indicator of water use efficiency) of Q. aquifolioides along an altitudinal gradient. We found that these leaf morphological and physiological responses to altitudinal gradients were non-linear with increasing altitude. Specific leaf area, stomatal length and index increased with increasing altitude below 2,800 m, but decreased with increasing altitude above 2,800 m. In contrast, leaf nitrogen content per unit area and carbon isotope composition showed opposite change patterns. Specific leaf area seemed to be the most important parameter that determined the carbon isotope composition along the altitudinal gradient. Our results suggest that near 2,800 m in altitude could be the optimum zone for growth and development of Q. aquifolioides, and highlight the importance of the influence of altitude in research on plant physiological ecology. Genetic variation and differentiation were investigated among five natural populations of Q. aquifolioides occurring along an altitudinal gradient that varied from 2,000 to 3,600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2=0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS=0.136) and a low level of differentiation among populations (FST=0.066). The result of the cluster analysis demonstrates that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation. To further elucidate genetic variation pattern of Q. aquifolioides populations under sub-alpine environments, genetic variation and differentiation were investigated along altitudinal gradients using AFLP markers. The altitudinal populations with an average altitude interval of 400 m, i.e. WL1, WL2, WL3, WL4 and WL5, correspond to the altitudes 2,000, 2,400, 2,800, 3,200 and 3,600 m, respectively. Our results were as follows: (i) decreasing genetic variation (ranging from 0.253 to 0.210) and increasing genetic differentiation with altitude were obtained from the WL2 to the WL5 population; (ii) the WL1 population showed the lowest genetic variation (HE = 0.181) and the highest genetic differentiation (average FST = 0.0596) with the other four populations; (iii) the positive correlation was obtained using Mantel tests between genetic and altitude distances except for the WL1 population. Our results suggest that altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides populations to some extent. In addition, habitat environments (unfavorable wet and hot conditions) and human disturbances (burning, grazing and felling) were possible influencing factors, especially to the low-altitude WL1 population. The present study shows that there were close correlations between morphological features and carbon isotope composition in our data. This indicates that a coordinated plant response modified these parameters simultaneously across different altitudes. Around 2,800 m altitude there seems to be an optimum zone for growth and development of Q. aquifolioides, as indicated by thinner leaves, larger stomata and more negative d13C values. All available evidence indicates altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides to some extent. Decreasing genetic variation and increasing genetic differentiation with altitude was obtained except for the WL1 population. And the environment of habitats and human disturbances were also contributing factors, which impact genetic variation pattern, especially to the low-altitude WL1 population.
Resumo:
干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.
Resumo:
川牛膝多糖(CP)是从传统中药川牛膝(Cyathula officinalis Kuan)中提取的一种活性多糖,现代药理研究表明川牛膝多糖是川牛膝许多生物活性的物质基础。本实验室前期进行了川牛膝多糖的提取、分离、结构鉴定及其部分活性研究,发现川牛膝中多糖含量非常高,在对川牛膝多糖活性的初步研究中也证实了其具有免疫调节作用。我们为了进一步了解其免疫调节活性,并为构效关系的研究奠定基础,对其进行了如下研究: 1. 通过体外毒性检测、淋巴细胞增殖实验、NK细胞杀伤活性和腹腔巨噬细胞吞噬中性红活性测定,发现川牛膝多糖在10~300μg/mL浓度范围内,对细胞无毒性作用;能够促进LPS诱导的B淋巴细胞增殖(P<0.01)、增强NK细胞杀伤活性(P<0.05)和PMΦ吞噬中性红活性(P<0.01),且随多糖浓度增高而增强;但其对ConA诱导的T淋巴细胞的增殖无促进作用(P>0.05)。 2. 通过正常小鼠体内淋巴细胞转化实验、迟发型变态反应分析、抗体生成细胞检测、碳粒廓清检测、腹腔巨噬细胞吞噬鸡红细胞活性和NK细胞活性测定,发现川牛膝多糖在适应性免疫方面能够促进SRBC免疫小鼠体内的抗体生成细胞的生成(P<0.01)和增强DNFB诱导的DTH(P<0.05),但对ConA诱导的脾淋巴细胞增殖无促进作用(P>0.05);在固有免疫方面能够提高小鼠碳粒廓清速率(P<0.05),PMΦ吞噬 CRBC 活性(P<0.01)和NK细胞杀伤活性(P<0.05)。同时还发现其对由环磷酰胺(Cy)引起的白细胞数下降具有很好的抑制作用(P<0.01)。 3. 为了获得结构明确、均一的保留活性的川牛膝多糖片段,为其作用机制、构效关系研究提供关键研究材料,我们开展了“保留免疫活性的最小片段”的分离制备的初步研究。建立并优化了川牛膝多糖的酸水解条件,发现在6%的样品浓度,0.025mol/L的硫酸浓度,65℃的水解温度,水解时间为8min的条件下可以得到一系列连续的多糖片段;采用Bio-Gel P2 分子筛柱层析分离得到5个级分,通过体外淋巴细胞增殖实验、NK细胞活性测定、腹腔巨噬细胞吞噬中性红实验发现其中的一个片段仍保留较强的免疫活性,并测得其分子量约为2057Da,为保留免疫活性的最小片段的进一步分离奠定了基础。 Cyathula officinalis Kuan is a commonly-used Traditional Chinese Medicine (TCM) with a wide range of pharmacological activities. Modern pharmacological researches showed the polysaccharide extracted from it (CP) is an important component for many bioactivities of this TCM. In the previous studies, we found CP showed significant immuno-regulative activities. In order to evaluate this activity systematically and lay foundations for revealling its immuno-regulative machanisms and the Structure -Function relationship, we carried out the following research works: 1. The in vitro immunoactivities of CP were evaluated by using normal mice immunocytes with respects to cytotoxicity, lymphocytes proliferation, NK activity and the ability of peritoneal macrophage phagocytizing neutral red. The polysaccharide showed no cytotoxicity below the concentration of 300 μg/mL, and could promote B lymphocytes proliferation (P<0.01), enhance NK activity (P<0.05) and the ability of peritoneal macrophage phagocytizing neutral red (P<0.01) at the concentration of 10-300 μg/mL. The above effects were positively correlated with the concentration of the polysaccharides. But it could not promote T lymphocytes proliferation (P>0.05). 2. The in vivo immunoactivities of CP were observed on normal mice through the following indices: splenic lymphocyte transformation efficiency, delayed-type allergy, antibody-forming cells activity (AFC), rate of carbon clearance, rate of peritoneal macrophage phagocytizing chicken red blood cell (CRBC) and NK activity, and its influence on the decline of the mouse leucocyte count induced by Cy. The polysaccharide at medium-dose enhanced delayed-type allergy (P<0.05)and NK activity(P<0.05) and increased the rate of carbon clearance(P<0.05), AFC activity(P<0.01) and the rate of peritoneal macrophage phagocytizing CRBC(P<0.01). The polysaccharides also effectively resisted the decline of the mouse leucocyte count induced by Cy(P<0.01). However, it couldn’t increase the splenic lymphocyte transformation efficiency(P>0.05). 3. Attempting to isolate and prepare the minimal fragments retaining activity with identical structure for further studying on immuno-regulative mechanism and Structure-Function relationship, we carried out the study on hydrolysis of CP, isolation of hydrolysed fragments, and the activity evaluation of the isolated fragments. CP with concentration of 6% was hydrolysed at 65℃ for 8 min with sulfuric acid of 0.025 mol/L,then the hydrolysate was separated using Bio-Gel P2 chromatography, 5 portions of fragments were obtained. The immunoactivities of these fragments were evaluated by using normal mice immunocytes with respect to lymphocytes proliferation, NK activity and ability of peritoneal macrophage phagocytizing neutral red. One fragment with relative molecular mass of 2057Da was found retaining immunoactivity.
Resumo:
实行西部经济大开发 ,水资源是制约的首要因素。要改善西部农业生产条件 ,加快生态环境建设 ,促进国民经济的发展 ,就必须在分析水资源利用现状的基础上 ,研究提出西部旱作农业抗旱节水的调控技术与途径 :加强水资源管理 ,建设节水型农业 ,从水资源时空调节角度出发 ,通过工程调水实现区域调节 ,建设库窑实行年季调节 ,拦蓄径流集雨补灌 ,充分利用自然降水 ,防止水土流失 ,增加覆盖防止蒸发 ,合理耕作促进根系深扎 ,最大限度地提高旱农区的水分利用率和利用效率 ,是西部旱作农业的根本出路。
Resumo:
以传统耕作栽培方式为对照,研究了5种保墒灌溉栽培方式下冬小麦产量构成的差异,并对冬小麦灌浆期旗叶叶绿素含量、MDA含量、SOD含量、水分利用效率进行了研究。结果显示:不同保墒灌溉栽培方式对冬小麦均有增产作用,平均增产13.46%,穗长平均增加7.15%,不孕小穗数平均降低21.78%,结实小穗平均增加11.42%,穗粒数平均增加10.82%,千粒重平均增加11.05%。保墒灌溉栽培方式的冬小麦灌浆期旗叶叶绿素含量降低减缓,MDA含量降低、SOD含量增高,水分利用效率平均提高24.03%。结果表明,以免耕留茬方式增产幅度最大,水分利用效率最高。