232 resultados para Resonant excitation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using time-resolved photoluminescence and time-resolved Kerr rotation spectroscopy, we explore the unique electron spin behavior in an InAs submonolayer sandwiched in a GaAs matrix, which shows very different spin characteristics under resonant and non-resonant excitations. While a very long spin relaxation lifetime of a few nanoseconds at low temperature is observed under non-resonant excitation, it decreases dramatically under resonant excitation. These interesting results are attributed to the difference in electron-hole interactions caused by non-geminate or geminate capture of photo-generated electron-hole pairs in the two excitation cases, and provide a direct verification of the electron-hole spatial correlation effect on electron spin relaxation. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using time-resolved photoluminescence and time-resolved Kerr rotation, we have studied the unique electron spin dynamics in InAs monolayer (ML) and submonolayer (SML), which were sandwiched in GaAs matrix. Under non-resonant excitation, the spin relaxation lifetimes of 3.4 ns and 0.48 ns were observed for 1/3 ML and I ML InAs samples, respectively. More interestingly, the spin lifetime of the 1/3 ML InAs decreased dramatically under resonant excitation, down to 70 ps, while the spin lifetime of the 1 ML sample did not vary much, changing only from 400 to 340 ps. These interesting results come from the different electron-hole interactions caused by different spatial electron-hole correlation, and they provide a direct evidence of the dominant spin relaxation process, i.e. the BAP mechanism. Furthermore, these new results may provide a valuable enlightenment in controlling the spin relaxation and in seeking new material systems for spintronics application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free surface waves in a cylinder of liquid under vertical excitation with slowly modulated amplitude are investigated in the current paper. It is shown by both theoretical analysis and numerical simulation that chaos may occur even for a single mode with modulation which can be used to explain Gollub and Meyer's experiment. The implied resonant mechanism accounting for this phenomenon is further elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating a resonant tunneling diode with a 1.2 mu m-thick slightly doped n-type GaAs layer in a three-barrier, two-well resonant tunneling structure, the resonant tunneling of photo-excited holes exhibits a value of peak-to-valley current ratio (PVCR) as high as 36. A vast number of photo-excited holes generated in this 1.2 mu m-thick slightly doped n-type GaAs layer, and the quantization of hole levels in a 23nm-thick quantum well on the outgoing side of hole tunneling out off the resonant tunneling diode which greatly depressed the valley current of the holes, are thought to be responsible for such greatly enhanced PVCR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasing excitation wavelength from 514 to 782 mn, a significant difference in the Raman spectra of SIC nanorods was observed as compared to bulk material. The intensity ratio of the LO mode to that of the IF mode increases with the excitation wavelength increasing. This has been identified as resonant Raman scattering caused by Frohlich interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-Raman measurements were carried out to investigate the microstructure of amorphous silicon-nitrogen alloy (a-SiNx:H) samples with different N contents prepared by plasma enhanced chemical vapor deposition (PECVD). Resonant Raman effect was discovered by using 647.1- and 514.5-nm excitation wavelengths. The frequency of TO mode downshifts with increasing photon energy without varying its width, while LO mode expands to a great extent. The frequency-dependent shift of TO band is explained by heterogeneous structure model and quantum confinement model, and the width expansion of LO mode may be related to the overlapping of LA and LO bands. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LO phonon modes in the barrier layers of a GaInAs/AlInAs multiple quantum well structure are investigated by resonance Raman scattering (RRS), the excitation laser photon energy tuned to resonate with the above barrier interband transition energy. The resonance enhancement of LO phonon peaks are shown to be caused by Frohlich electron-phonon interaction. The pressure-dependent profiles for both AlAs-like (LO(2) mode) and InAs-like (LO(1) mode) Raman peak intensities are well fitted by the Gaussian lineshape. The shift between these two profiles can be explained by the outgoing RRS mechanism, providing information on the pressure-induced shift of the excitonic transition energy. The amplitude ratios of the two profiles are close to 1, showing a well defined two-mode behavior and the nearly equal polarizability for Al-As and In-As bonds in AlInAs alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p.A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦, 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters.Generally speaking,the present rates are much smaller than the previous ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.