47 resultados para Repeatability
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main diaphragm has been presented, by which the produced incident shock waves have higher repeatability, and better steadiness in the pressure, temperature and velocity fields of flow behind the incident shock, and thus meets the requirements of aerodynamic experiment. The attachment of a damping section at the end of the driver can eliminate the high reflection pressure produced by detonation wave, and the backward detonation driver can be employed to generate high enthalpy and high density test flow. The incident shock wave produced by this method is well repeated and with weak attenuation. The reflection wave caused by the contracted section at the main diaphragm will weaken the unfavorable effect of rarefaction wave behind the detonation wave, which indicates that the forward detonation driver can be applied in the practice. For incident shock wave of identical strength, the initial pressure of the forward detonation driver is about 1 order of magnitude lower than that of backward detonation.
Resumo:
We reported here a novel technique for laser high speed drillings on Printed Circuit Boards (PCBs). A CNC solid laser based system is developed to drill through and blind vias as an alternative to mechanical drilling. The system employs an Acousto-Optic Q-switched Nd: YAG laser, a computer control system and an X-Y moving table which can handle up to 400 x 400 mm PCB. With a special designed cavity the laser system works in a pulsed operation in order to generate pulses with width down to 0.5 mu s and maximum peak power over 10kW at 10k repetition rate. Delivered by an improved optical beam transforming system, the focused laser beam can drill hobs including blind vias on PCBs with diameter in the range of 0.1 - 0.4 mm and at up to 300 - 500 vias per second (depending on the construction of PCBs). By means of a CNC X-Y moving system, laser pulses with pulse-to-pulse superior repeatability can be fired at desired location on a PCBs with high accuracy. This alternative technology for drilling through or blind vias on PCBs or PWBs (printed wiring boards) will obviously enhance the capability to printed boards manufacturing.
Resumo:
A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.
Resumo:
In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.
Resumo:
现有的半导体激光干涉仪存在测量精度与测量范围的矛盾。本文提出一种新的实时位移测量半导体激光干涉仪,并分析了干涉仪的测量原理。首先提出一种新的解相算法,它通过两路实时相位探测电路从干涉信号中得到待测量相位,消除了光强波动、初始光程差、电路放大倍数、调制深度、Bessel函数等参数对测量精度的影响,提高了测量精度。其次,提出一种扩大测量范围的技术,并用解包裹电路得到真实相位和待测量的位移, 将测量范围从半个波长提高到几个波长。在实验中,测得喇叭的峰峰值为2361.7nm,重复测量精度为2.56nm,测量时间为
Resumo:
提出了一种基于狭缝投影的位置传感技术,阐述了此技术的传感原理及其在精密定位中的应用。准直激光束照明的投影狭缝由一个透镜以掠入射角度投影在被测物体上,狭缝投影经过被测物体表面的反射和另一个透镜的成像在探测双缝上形成投影狭缝像。探测双缝放大成像在双像限探测器上,投影狭缝像透过探测双缝的光强分别被双像限探测器的两个像限所接收,通过检测双像限探测器两个像限上的光强获得被测物体的位置。实验验证了此传感技术的可行性,其位置重复测量偏差小于32nm(1σ)。
Resumo:
提出了一种基于光栅成像投影的微位移检测方法,利用光学傅里叶变换原理给出了具体的理论分析。准直激光束照明的光栅通过一个4f系统成像投影在被测物体表面上,光栅投影经过被测物体表面反射后由另一个4f系统成像在探测光栅上。探测光栅由一个透镜组成像在光电探测器上,其中采用由起偏器、光弹调制器和检偏器组成的偏振调制单元对探测光强进行调制。通过在4f系统的频谱面上设置滤波光阑,在光电探测器上获得了与被测物体的微位移成正弦关系的光强变化,检测出光电探测器上的光强变化即可以获得被测物体的位移量。实验验证了该检测方法的可行性
Resumo:
报道了一种高精度测量光纤连接器端面几何参量的自动测量仪。叙述了光纤连接器的端面几何参量的测量原理。由光纤连接器端面形貌和纤芯中心坐标,可以高精度得到曲率半径、顶点偏移量、端面倾斜角和光纤高度等影响连接器性能的关键端面几何参量。该仪器体积小,自动化程度高,用户界面友好,使用方便,可测量物理接触、角度式物理接触等类型的光纤连接器端面几何参量。实际测量证明,该测量仪有很好的重复测量精度。该测量仪与美国Dorc公司ZX-1 mini PMS测量仪和Norland公司NC3000测量仪相比,测量精度水平相当。该仪器
Resumo:
A new method for measuring the birefringence dispersion in polarization-maintaining fibers (PMFs) with high sensitivity and accuracy is presented. The method employs white-light interferences between two orthogonally polarized modes of PMFs. The group birefringence of the fiber is calibrated first. Then the birefringence dispersion and its variation along different fiber sections are acquired by analyzing the broadening of interferograms at different fiber lengths. The main sources of error are investigated. Bireffingence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm). A measurement repeatability of 0.001 ps/(km nm) is achieved. (C) 2007 Optical Society of America.
Resumo:
提出一种基于平行平板干涉仪的改进型角度测量方法。为了实现较大的偏转角度测量,该平行平板干涉仪引入了一位置探测系统。平面反射镜的引入提高了角度测量的分辨率。实验验证了可在近3度的范围内实现被测偏转角度的高精度测量。并且作为一位相调制型干涉仪,其小角位移测量实验的重复精度可达5.5×10^(-8)rad。
Resumo:
A parallel plate interferometer with a reflecting mirror for measuring angular displacement is proposed. A deflection angle of a beam caused by an angular displacement is amplified by use of a reflecting mirror to increase the optical path difference (OPD) in the plane-parallel plate, which provides high sensitivity of the phase measurement. Detection of light transmitted through the plane-parallel plate with a position sensitive detector (PSD) enables high accurate measurement of the initial angle of incidence to the plane-parallel plate with insensitivity to stray light. The improved parallel plate interferometer achieves a measurement repeatability of 10(-8) rad. (C) 2007 The Optical Society of Japan.
Resumo:
表面形貌干涉测量技术是一种高精度的非接触式测量技术,在工业生产和科学研究中具有广泛的应用。提出一种实时测量表面形貌的正弦相位调制干涉测量新技术。该技术用激光二极管作光源,用自制的高速图像传感器探测干涉信号,通过信号处理电路实时解相得到被测表面所对应的相位分布,实时分析相位获得物体表面形貌。该技术消除了光强和部分外界干扰的影响,提高了系统的测量精度。楔形光学平板表面形貌的测量结果表明,测量点为60×60个的情况下,测量时间小于8.2 ms,重复测量精度(RMS)为4.3 nm。
Resumo:
正弦相位调制(SPM)干涉测量技术用于表面形貌测量时, 需要帧速高于300 frame/s的图像传感器, 同时要求调制信号频率与图像传感器帧速成确定的整数倍关系。提出一种基于低速CCD(30 frame/s)的帧速可调的高速图像传感技术, 通过控制每帧像素总数提高CCD帧速, 研制出一种高帧速图像传感器, 帧速可达300~1600 frame/s, 且每帧大小连续可调。将该CCD传感器用于正弦相位调制干涉泰曼-格林干涉仪, 测量镀膜玻璃板表面形貌, 当CCD图像传感器的帧速与调制信号频率呈16, 8, 4
Resumo:
在一种已有的角位移干涉测量技术的基础上,提出一种改进的角位移测量方法。通过选择合适的初始入射角,使从平板前后表面反射的两光束实现剪切干涉。采用一维位置探测器测量光束经透镜会聚后在探测器光敏面上的光点偏移量。根据干涉信号的相位和光点偏移量可以计算出被测物体的角位移。在该测量方案中,引入的一平面反射镜与被测物体的反射面形成光程差放大系统,提高了角位移测量灵敏度。分析了初始入射角对剪切比的影响,并讨论了基于该方案的角位移测量精度。实验结果表明,基于该技术的角位移重复测量精度达到10-8 rad数量级。
Resumo:
提出一种精确检测光刻机激光干涉仪测量系统非正交性的新方法。将对准标记曝光到硅片表面并进行显影;利用光学对准系统测量曝光到硅片上的对准标记理论曝光位置与实际读取位置的偏差;由推导的位置偏差与非正交因子、坐标轴尺度比例、过程引入误差的线性模型,根据最小二乘原理计算出干涉仪测量系统的非正交性。实验结果表明,利用该方法使用同一硅片在不同旋转角下进行测量,干涉仪测量系统非正交因子的测量重复精度优于0.01 μrad,坐标轴尺度比例的测量重复精度优于0.7×10-6。使用不同的硅片进行测量,非正交因子的测量再现性优于