16 resultados para Reovirus

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dicer catalyzes the initiation step of RNA interference (RNAi) which is known to play a significant role in innate immune response to viral infection in many organisms. To study the RNAi-related pathway after virus infection in fish, we identified a partial cDNA sequence of dicer from rare minnow, Gobiocypris rants. Real-time quantitative RT-PCR (qRT-PCR) demonstrated the Dicer transcript level was the highest at zygote stage, decreased at prim-5 stage, and was stable from the protruding mouth to adult stage. Regular RT-PCR analysis showed that the Dicer gene expressed widely in the tested tissues, including brain, gill, heart, intestine, kidney, liver, muscle, ovary, spleen and testis. The expression of Dicer mRNA was significantly increased in the early period of Grass carp reovirus (GCRV) infection, and declined from 24 It post-injection (h p.i.) (P<0.05). The mRNA expression returned to control levels at 48 h p.i. (P>0.05). Under transmission electron microscope, virions were difficulty to find out in 12 h p.i., and virus inclusion bodies and few scattered viral particles were easily visualized from 24 h p.i. to moribund. These results implied GCRV triggered the RNAi pathway in the early stages of infection and perhaps virus inclusion bodies suppressed the antiviral functions of RNAi mechanism. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full-length and partial genome sequences of four members of the genus Aquareovirus, family Reoviridae (Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus) were characterized. Based on sequence comparison, the unclassified Grass carp reovirus was shown to be a member of the species Aquareovirus C The status of golden ide reovirus, another unclassified aquareovirus, was also examined. Sequence analysis showed that it did not belong to the species Aquareovirus A or C, but assessment of its relationship to the species Aquareovirus B, D, E and F was hampered by the absence of genetic data from these species. In agreement with previous reports of ultrastructural resemblance between aquareoviruses and orthoreoviruses, genetic analysis revealed homology in the genes of the two groups. This homology concerned eight of the 11 segments of the aquareovirus genome (amino acid identity 17-42%), and similar genetic organization was observed in two other segments. The conserved terminal sequences in the genomes of members of the two groups were also similar. These data are undoubtedly an indication of the common evolutionary origin of these viruses. This clear genetic relatedness between members of distinct genera is unique within the family Reoviridae. Such a genetic relationship is usually observed between members of a single genus. However, the current taxonomic classification of aquareoviruses and orthoreoviruses in two different genera is supported by a number of characteristics, including their distinct G+C contents, unequal numbers of genome segments, absence of an antigenic relationship, different cytopathic effects and specific econiches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemorrhagic disease, caused by the grass carp reovirus (GCRV), is one of the major diseases of grass carp in China. Little is known about the structure and function of the gene segments of this reovirus. The S10 genome segment of GCRV was cloned and the complete nucleotide sequence is reported here. The S10 is 909 nucleotides long and contains a large open reading frame (ORF) encoding a protein of 276 amino acids with a deduced molecular weight of approximately 29.7 kDa. Comparisons of the deduced amino acid sequence of GCRV S10 with those of other reoviruses revealed no significant homologies. However, GCRV S10 shared a putative zinc-finger sequence and a similar distribution of hydrophilic motifs with the outer capsid proteins encoded by Coho salmon aquareovirus (SCSV) S10, striped bass reovirus (SBRV) S10, and mammalian reovirus (MRV) S4. It was predicted that this segment gene encodes an outer capsid protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genome segments 1, 2, and 3 of the grass carp reovirus (GCRV), a tentative species assigned to genus Aquareouirus, family Reouiridae, were sequenced. The respective segments 1, 2, and 3 were 3949, 3877, and 3702 nucleotides long. Conserved moths 5' (GUUAUUU) and 3' (UUCAUC) were found at the ends of each segment. Each segment contains a single ORF and the negative strand does not permit identification of consistent ORFs. Sequence analysis revealed that VP2 is the viral polymerase, while VPI might represent the viral guanyly/methyl transferase (involved in the capping process of RNA transcripts) and VP3 the NTPase/helicase (involved in the transcription and capping of viral RNAs), The highest amino acid identities (26-41%) were found with orthoreovirus proteins. Further genomic characterization should provide insight about the genetic relationships between GCRV, aquareoviruses, and orthoreoviruses, It should also permit to precise the taxonomic status of these different viruses. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水生呼肠孤病毒为感染水生动物的一类病原体,隶属于呼肠孤病毒科新建水生呼肠孤病毒属。草鱼呼肠孤病毒(Grass carp reovirus,GCRV)是引起中国南方淡水养殖草鱼暴发性出血病病原,鲅鱼呼肠孤病毒(Threadfin reovirus,TFV)是引起海水养殖鲅鱼病毒病病原。本研究将GCRV与新加坡TFV分离株进行了部分特性比较研究。结果表明,GCRV与TFV均能感染CIK细胞,但对其它鱼类细胞系的敏感性有所差异。此外,凝胶电泳与逆转录聚合酶链式扩增显示,GCRV与TFV核酸属不同的基因型。在多肽

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正> 草鱼出血病(Hemorrhage of grass carp)是草鱼种的一种严重疾病,通常在水温25—30%时发病,1980年水生生物研究所病毒组从草鱼肾组织超薄切片(在电镜下)观察到品格状排列的病毒颗粒,并暂名为疱疹病毒。经进一步研究,1982年正式定名为草鱼呼肠孤病毒(Reovirus of grass carp)。此病毒属双股RNA类型。把病毒接种到草鱼鳍条细胞株,在28℃、72小时以后能清晰的看到细胞病变(CPE)。病变初期,细胞受刺激后无限制地加速生长,致使细胞间隔不清,出现一些颗粒状物

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P < 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Argonaute 2 gene plays a pivotal role in RNAi in many species. Herein is the first report of the cloning and characterization of Argonaute 2 gene in fish. The full-length cDNA of Gobiocypris rarus Argonaute 2 (GrAgo2) consisted of 3073 nucleotides encoding 869 amino acid residues with a calculated molecular weight of 98.499 kDa and an estimated isoelectric point of 9.18. Analysis of the deduced amino acid sequence showed the presence of two signature domains, PAZ and Piwi. RT-PCR analysis indicated that GrAgo2 mRNA expression could be detected in widespread tissues. After infection with grass carp reovirus, GrAgo2 expression was up-regulated from 12 h post-injection (p < 0.05) and returned to control levels at 48 h post-injection (p > 0.05). These data imply that GrAgo2 is involved in antiviral defense in rare minnow. (C) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double-stranded RNA-activated protein kinase (PKR) plays an important rote in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In the present study, a PKR-like gene was cloned and characterized from rare minnow Gobiocypris rarus. The full length of the rare minnow PKR-like (GrPKZ) cDNA is 1946 bp in Length and encodes a polypeptide of 503 amino acids with an estimated molecular mass of 57,355 Da and a predicted isoelectric point of 5.83. Analysis of the deduced amino acid sequence indicated that the mature peptide contains two Zalpha domains and one S_TKc domain, and is most similar to the crucian carp (Carassius auratus) PKR-like amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed that GrPKZ mRNA expression is at low levels in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus, GrPKZ expression was up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). Following infection with Aeromonas hydrophila, GrPKZ transcripts were induced at 24 h post-injection (P < 0.05) and returned to control levels at 120 h post-injection. These data imply that GrPKZ is involved in antiviral defense and Toll-like receptor 4 signaling pathway in bacterial infection. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although reovirus infection is one of the major virus diseases of grass carp in China, the available knowledge on the structure and function of genes and proteins of the virus is limited. The complete sequence of the S9 genome segment of grass carp hemorrhage virus (GCHV) was determined. The segment consists of 1130 nucleotides and has a large open reading frame (ORF) encoding a protein of 352 amino acids with predicted molecular mass of 37.7 kDa. Amino acid sequence comparison revealed that the deduced protein encoded by GCHV S9 is closely related to the sigma NS proteins of mammalian reovirus (MRV) and avian reovirus (ARV). Secondary structure analysis displayed that the form of alpha -helices (40.1%) and beta -sheets (49.4%) are the richest two contents in the protein encoded by S9, and this protein is predicted to be a nonstructural protein. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genome segment S8 of grass carp hemorrhage virus (GCHV) was determined from cDNA corresponding to the viral genomic RNA. It is 1,287 nucleotides in length and contains a large open reading frame that could encode a protein of 409 amino acids with a predicted molecular mass of 44 kD. The S8 was expressed using the pET fusion protein vector and detected by Western blotting analysis using the chicken egg IgY against intact GCHV particles, indicating that S8 encodes a virion protein. Amino acid sequence comparisons revealed that the protein encoded by S8 is closely related to protein alpha2 of mammalian reovirus, suggesting that the deduced protein of S8 is an inner capsid protein. Copyright (C) 2001 S. Karger AG, Basel.