50 resultados para Reinforcing bars.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.
Resumo:
The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.
Resumo:
A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300degreesC. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C-19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 mum coating layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.
Resumo:
The mechanical behaviors of 2124, Al-5Cu, Al-Li and 6061 alloys reinforced by silicon carbide particulates, together with 15%SiCw/6061 alloy, were studied under the quasi-static and impact loading conditions, using the split Hopkinson tension/compression bars and Instron universal testing machine. The effect of strain rate on the ultra tensile strength (UTS), the hardening modulus and the failure strain was investigated. At the same time, the SEM observations of dynamic fracture surfaces of various MMC materials showed some distinguished microstructures and patterns. Some new characteristics of asymmetry of mechanical behaviors of MMCs under tension and compression loading were also presented and explained in details, and they could be considered as marks to indicate, to some degree, the mechanism of controlling damage and failure of MMCs under impact loading. The development of new constitutive laws about MMCs under impact loading should benefit from these experimental results and theoretical analysis.
Resumo:
Titanium carbide reinforced nickel aluminide matrix in situ composites were produced using a newly patented laser melting furnace. Microstructure of the laser melted TiC/(Ni3Al–NiAl) in situ composites was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results showed that the constituent phases in the laser melted in situ composites are TiC, Ni3Al and NiAl. Volume fraction of TiC and NiAl increase with increasing content of titanium and carbon. The growth morphology of the reinforcing TiC carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid.
Resumo:
Dislocation models with considering the mismatch of elastic modulus between matrix and reinforcing particles are used to determine the effective strain gradient \ita for particle reinforced metal matrix composites (MMCp) in the present research. Based on Taylor relation and the kinetics of dislocation multiplication, glide and annihilation, a strain gradient dependent constitutive equation is developed. By using this strain gradient-dependent constitutive equation, size-dependent deformation strengthening behavior is characterized. The results demonstrate that the smaller the particle size, the more excellent in the reinforcing effect. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.
Resumo:
Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.
Resumo:
Finite element analysis is employed to investigate void growth embedded in elastic-plastic matrix material. Axisymmetric and plane stress conditions are considered. The simulation of void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or large plastic straining for various strain hardening materials to study the mechanism of void growth in ductile materials. Triaxial tension and large plastic strain encircling around the void are found to be of most importance for driving void growth. The straining mode of incremental loading which favors the necessary strain concentration around void for its growth can be characterized by the vanishing condition of a parameter called "the third invariant of generalized strain rate". Under this condition, it accentuates the internal strain concentration and the strain energy stored/dissipated within the material layer surrounding the void. Experimental results are cited to justify the effect of this loading parameter. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An intended numerical investigation is carried out. The results indicate that, even if a perfect adhesive bond is preserved between the particles and matrix materials, the two-phase element cell model is unable to predict the strength increment of the particulate polymeric composites (PPC). To explore the main reinforcing mechanism, additional microscopic experiment is performed. An ''influence zone'' was observed around each particle which is measured about 2 to 10 micrometers in thickness for a glass-polyethylene mixture. Then, an improved computational model is presented to include the ''influence zone'' effect and several mechanical behaviors of PPC are well simulated through this new model.
Resumo:
The loading reverberation is a multiple wave effect on the specimen in the split Hopkinson torsional bar (SHTB). Its existence intensively destroys the microstructure pattern in the tested material and therefore, interferes with the study correlating the deformed microstructure to the macroscopic stress-strain response. This paper discusses the problem of the loading reverberation and its effects on the post-mortem observations in the SHTB experiment. The cause of the loading reverberation is illustrated by a stress wave analysis. The modification of the standard SHTB is introduced, which involves attaching two unloading bars at the two ends of the original main bar system and adopting a new loading head and a couple of specially designed clutches. The clutches are placed between the main bar system and the unloading bars in order to lead the secondary loading wave out of the main bar system and to cut off the connection in a timely manner. The loading head of the standard torsional bar was redesigned by using a tube-type loading device associated with a ratchet system to ensure the exclusion of the reflected wave. Thus, the secondary loading waves were wholly trapped in the two unloading bars. The wave recording results and the contrasting experiments for examining the post-mortem microstructure during shear banding both before and after the modification highly support the effectiveness of the modified version. The modified SHTB realizes a single wave pulse loading process and will become a useful tool for investigating the relation between the deformed microstructure and the macroscopic stress-strain response. It will play an important role especially in the study of the evolution of the microstructure during the shear banding process. (C) 1995 American Institute of Physics.
Resumo:
利用分离式Hopkinson压杆和MTS通用材料试验机研究了SiC_p/6151Al颗粒增强复合材料在不同应变率下的变形行为和增强颗粒的尺寸对复合材料微结构及变形行为的影响。结果表明,对于在不同应变率下的SiC_p/6151Al复合材料,增强颗粒尺寸大小的流动应力高于增强颗粒尺寸的流动应力。根据位错强化理论中的Hall-Petch关系对这个结果进行了解释。首次在实验上观测到增强颗粒对复合材料微损伤-微带形成的影响,并根据微带(microband)形成的双位错墙理论(double dislocation walls), 分析了增强颗粒对复合材料微带损伤及力学性能影响的微结构效应。
Resumo:
本文针对平面链网模型与空间链网模型,发展了模拟非均质材料的数值软件,旨在分析材料的损伤破坏特征,寻找材料细观结构同宏观力学行为之间的相互联系,探讨材料强韧化机理以及评估材料的力学性能。采用可视化技术设计的具有交互式功能的图象用户界面,能根据具体材料对象构造特定材料模型来分析其力学行为与服役能力。初步结果表明,无论是材料弹性阶段的性质还是损伤演化阶段材料中裂纹的萌生、扩展、汇集和材料的最终失效等现象都与已有的理论结果及试验结果符合得很好。另外,本文还对材料的强韧化机理作了探索。