121 resultados para Reagent Kits
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The aim of this work is to identify if there is sex specificity on C-12(6+) ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P < 0.05) between male groups and female groups, suggesting that the lungs of male mice are more sensitive to counteracting the oxidative challenge. Moreover, higher levels of malondiadehyde and lower contents of glutathione were also found in males, indicating that oxidative stress induced by C-12(6+) ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones.
Resumo:
Trichloroisocyanuric acid (TCCA) is a cheap, safe and readily available alternative to the commonly used hydrogen peroxide and hypochlorite for the phase-transfer catalytic epoxidation of alpha,beta-enones under non-aqueous conditions. A variety of chalcone derivatives give the corresponding epoxides with quantitative conversion and satisfactory yields in just a few hours under mild conditions. An asymmetric variant of the epoxidation can be carried out in the presence of chiral N-anthracenylmethylcinchonidine bromide catalyst giving 73-93% ees and 76-94% yields.
Resumo:
The expressions used for describing the angular distribution of oriented and aligned reagent molecules are derived. The algebraic forms of orientation and alignment parameters of molecules in the excited states are obtained for two-photon excitation. The reagent molecules after absorbing two-photon may produce the higher order orientation and alignment than doing one-photon. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The expressions used for controlling the alignment and orientation of reagent molecules are derived. The problem to the control of the orientation and alignment of reagent molecules by the polarization direction and propagation direction of laser is discussed.
Resumo:
A bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate (TEPI) was initially adopted as a spacer reagent to prepare the bonded types of chiral stationary phases (CSPs) with cellulose derivatives. The silica-based CSPs were chemically prepared with non-regioselective and regioselective approaches and their chiral resolving capabilities were evaluated in terms of HPLC resolution of test enantiomers. It was observed that the chiral recognition capabilities of the non-regioselectively prepared CSPs were influenced by the amount of TEPI used. And also, the regioselectively prepared CSP generally showed a slightly higher resolution power than the non-regioselectively prepared CSP, while the non-regioselective procedures were highly advantageous to rapid preparation. In addition, chiral recognition of the prepared CSPs was affected by the properties of the used silica matrices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A novel method for reagent-controlled asymmetric iodolactonization of 5-aryl-4-pentenoic acids is reported. This work uses carboxylate ion pairs combined with cinchona alkaloids as chiral sources of carboxylate anion for the first time leading to a mixture of two regio-isomeric iodolactones with moderate enantioselectivity (exo- 18.5% ee, endo-35.0% ee) under mild reaction conditions.
Resumo:
In this paper, we report on a solid phase time-resolved fluorescence immunoassay chelate reagent-4,7-bis(chlorosulfophenyl)1, 10-phenanthroline-2,9-dicarboxylic acid (BCPDA), which is suitable as a fluorescent labeling agent. The five step synthesis product of BCPDA was presented for improving the purity of the product based on the three step synthesis product. The approach involves chlorization, hydrolyzing the ester, preparing disodium, carboxylate to diacid, sulfonation. The yield of five step product is 99 %, 45 %, 94 %, 95 %, 80 % respectively. The structure and purity of product was characterized by the melting point, IR,H-1 NMR, UV spectrum, element analysis, and proved to be consistent with the structure predictal.
Resumo:
Acetone and dimethyl ether( DME) have been shown to be reagent gases of exceptional utitlity and versatility for the characterization of a variety of class of organic compounds. The fragmentation mechanisms of the adduct product ions, formed by ion/molceule reaction of the substrate with the ionized gases, have been studied and substantiated by experiments with acetone-d(6) and DME-d(6).
Resumo:
A novel labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) coupling to liquid chromatography with electrospray ionization mass spectrometry for the detection of carbohydrates from the derivatized rape bee pollen samples is reported. Carbohydrates are derivatized to their bis-NMP-labeled derivatives. Derivatives showed an intense protonated molecular ion at m/z [M+H](+) in positive-ion detection mode. The mass-to-charge ratios of characteristic fragment ions at m/z 473.0 could be used for the accurately qualitative analysis of carbohydrates. This characteristic fragment ion is from the cleavage of C2-C3 bond in carbohydrate chain giving the specific fragment ions at m/z [MH-CmH2m+1Om-H2O](+) for pentose, hexose and glyceraldehydes and at m/z [MH-CmH2m-1Om+1-H2O](+) for alduronic acids such as galacturonic acid and glucuronic acid (m = n - 2, n is carbon number of carbohydrate). No interferences for all aliphatic and aromatic aldehydes presented in natural environmental samples were observed due to the highly specific parent mass-to-charge ratio and the characteristic fragment ions. The method, in conjunction with a gradient elution, offered a baseline resolution of carbohydrate derivatives on a reversed-phase Hypersil ODS-2 column. The carbohydrates such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose and fucose can successfully be detected.
Resumo:
On a reversed phase Hypersil BDS C-18 (200 mm x 4. 6 mm, 5 mu m) column, 20 amino acids, which were derivatized using 2-(11H-benzo [a] carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) as pre-column derivatization reagent, were separated in conjunction with a gradient elution. Optimum derivatization was obtained by reacting of amino acids with BCEC-Cl at room temperature for 5 min in the presence of sodium borate catalyst in acetonitrile solvent. The fluorescence excitation and emission wavelengths were 279 nm and 380 nm respectively. The identification of amino acid derivatives from hydrolyzed bovine serum albumin and bee pollen was carried out by post-column mass spectrometry with electrospray ion source in positive ion mode. Linear correlation coefficients of the amino acid derivatives were > 0.9990, and detection limits (at signal to noise of 3:1) were 1.49 - 19.74 fmol for the labeled amino acids.
Resumo:
A new labeling reagent, 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP), coupling with liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS) for the detection of carbohydrates from a famous Tibetan medicine is reported. Carbohydrates were derivatized to their bis-NMP-labeled derivatives. The method, in conjunction with a gradient elution, offered a baseline resolution of carbohydrate derivatives on a reversed phase Hypersil ODS-2 column. The carbohydrates such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose, and fucose could be successfully detected by UV and ESI-MS. Derivatives showed intense protonated molecular ion at m/z [M+H]+ in positive ion mode. The mass to charge ratios of characteristic fragment ions at m/z 473.0 could be used for the accurately qualitative identification of carbohydrates; this characteristic fragment ion was from the cleavage of C2-C3 bond in the carbohydrate chain giving the specific fragment ions at m/z [MH-CmH2m+1Om-H2O](+) for pentose, hexose, and glyceraldehydes, and at m/z [MH-CmH2m-1Om+1-H2O](+) for alduronic acids, such as galacturonic acid and glucuronic acid (m=n-2, n is carbon atom number of carbohydrate). Compared with the traditional 1-phenyl-3-methyl-5-pyrazolone (PMP) reagent, currently synthesized NMP show the advantage of higher sensitivity to carbohydrate compounds with UV and ESI-MS detection.
Resumo:
A novel labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) coupled with capillary electrophoresis (CE) with DAD detection for the determination of carbohydrates has been developed. The chromophore in the 1-phenyl-3-methyl-5-pyrazolone (PMP) reagent is replaced by naphthyl functional group, which results in a reagent with very high molar absorptivity (epsilon(251nm) = 5.58 x 10(4) L mol(-1) cm(-1)). This pen-nits NMP-labeled carbohydrates to be detected with UV absorbance in standard 50-mu m-i.d. fused silica capillaries by zone electrophoresis. in this mode, nanomolar concentrations of detection limits are obtained. The method for the derivatization. of carbohydrates with NMP is simplified. The derivatization reaction is rapid and mild in the presence of ammonia catalyst without further transfer steps. Nine monosaccharide derivatives such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose and fucose can successfully be detected in CE mode. Good reproducibility can be obtained with relative standard deviation (R.S.D.) values of the migration times and peak area, respectively, from 0.44 to 0.48 and from 3.2 to 4.8. Furthermore, the developed method has been successfully applied to the analysis of carbohydrates in the hydrolyzed rape bee pollen samples. (C) 2008 Published by Elsevier B.V.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.