79 resultados para Raman modes
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Planar graphite has been extensively studied by Raman scattering for years. A comparative Raman study of several different and less common non-planar graphitic materials is given here. New kinds of graphite whiskers and tubular graphite cones (synthetic and natural) have been introduced. Raman spectroscopy has been applied to the characterization of natural graphite crystal edge planes, an individual graphite whisker graphite polyhedral crystals and tubular graphite cones. Almost all of the observed Raman modes were assigned according to the selection rules and the double-resonance Raman mechanism. The polarization properties related to the structural features, the line shape of the first-order dispersive mode and its combination modes, the frequency variation of some modes in different carbon materials and other unique Raman spectral features are discussed here in detail.
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.
Resumo:
The near-resonance Raman scattering of GaAs/AlAs superlattices is investigated at room temperature. Owing to the resonance enhancement of Frohlich interaction, the scattering intensity of even LO confined modes with A1 symmetry becomes much stronger than that of odd modes with B2 symmetry. The even modes were observed in the polarized spectra, while the odd modes appear in the depolarized spectra as in the off-resonance case. The second-order Raman spectra show that the polarized spectra are composed of the overtone and combinations of even modes, while the depolarized spectra are composed of the combinations of one odd mode and one even mode. The results agree well with the selection rules predicted by the microscopic theory of Raman scattering in superlattices, developed recently by Huang and co-workers. In addition, the interface modes and the combinations of interface modes and confined modes are also observed in the two configurations.
Resumo:
The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.
Resumo:
Raman scattering experiments for nominally pure and uranium doped CaF2 single crystals were presented. In all crystals, the Raman active T_(2g) vibration mode of CaF2 was observed, whose frequency shift and full-width at half-maximum (FWHM) broadening correspond well with defects and impurities in CaF2 lattice. Additional Raman peaks develop in nominally pure CaF2 with high etch pits density and U^(6+):CaF2 crystals. Part of additional Raman peaks in the experimental results, which are assumed due to vibration modes from F- interstitials and vacancies, are in well agreement with the theoretical predications by employing the Green-function formulation.
Resumo:
Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), LU2SiO5 (LSO), (Lu0.5Y0.5)(2)SiO5 (LYSO) and their ytterbium-doped samples. Raman spectra show resolved bands below 500 cm(-1) region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE-O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm(-1) are an indication of impurities. The (SiO4)(4-) tetrahedra are characterized by bands near 200 cm(-1) which show a separation of the components of nu(4) and nu(2), in the 500-700 cm(-1) region which are attributed to the distorting bending vibration and in the 880-1000 cm(-1) region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300-610 cm(-1) region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si-O bending modes and RE-0 stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Raman scattering (RS) experiments have been performed for simultaneous determination of Mn composition and strain in Ga1-xMnxSb thin films grown on GaSb substrate by liquid phase epitaxy technique. The Raman spectra obtained from various Ga1-xMnxSb samples show only GaSb-like phonon modes whose frequency positions are found to have Mn compositional dependence. With the combination of epilayer strain model, RS and energy dispersive x-ray (EDX) experiments, the compositional dependence of GaSb-like LO phonon frequency is proposed both in strained and unstrained conditions. The proposed relationships are used to evaluate Mn composition and strain from the Ga1-xMnxSb samples. The results obtained from the RS data are found to be in good agreement with those determined independently by the EDX analysis. Furthermore, the frequency positions of MnSb-like phonon modes are suggested by reduced-mass model. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.
Resumo:
In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.
Raman scattering study on Ga1-xMnxAs prepared by Mn ions implantation, deposition and post-annealing
Resumo:
Raman scattering measurements have been performed in Ga1-xMnxAs crystals prepared by Mn ions implantation, deposition, and post-annealing. The Raman spectrum measured from the implanted surface of the sample shows some weak phonon modes in addition to GaAs-like phonon modes, where the GaAs-like LO and TO phonons are found to be shifted by approximately 4 and 2 cm(-1), respectively, in the lower frequency direction compared to those observed from the unimplanted surface of the sample. The weak vibrational modes observed are assigned to hausmannite Mn3O4 like. The coupled LO-phonon plasmon mode (CLOPM), and defects and As related vibrational modes caused by Mn ions implantation, deposition, and post-annealing are also observed. The compositional dependence of GaAs-like LO phonon frequency is developed for strained and unstrained conditions and then using the observed LOGaAs peak, the Mn composition is evaluated to be 0.034. Furthermore, by analyzing the intensity of CLOPM and unscreened LOGaAs phonon mode, the hole density is evaluated to be 1.84 x 10(18) cm(-3). (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Raman measurements and photoluminescence (PL) were performed on the metal-organic chemical-vapor deposition epitaxially grown GaN before and after the implantation with Er and Er+O. Several Raman defect modes have emerged from the implantation-damaged samples. The structures around 300 and 595 cm(-1) modes are attributed to the disorder-activated Raman scattering, whereas the 670 cm(-1) peak is assigned to nitrogen-vacancy-related defect scattering. One additional peak at 360 cm(-1) arises after Er+O coimplantation. This Raman peak is attributed to the O-implantation-induced defect complex. The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL intensity for the GaN:Er+O samples. (C) 2004 American Institute of Physics.
Resumo:
Self-assembled Si/Ge dot multilayers with small, uncorrelated dots fabricated by molecular beam epitaxy in the Stranski-Krastanov growth mode are studied by Raman scattering of folded longitudinal acoustic (FLA) modes. The FLA Raman spectra are analyzed and modeled with respect to mode frequencies and the spectral envelope of mode intensities. The deduced average superlattice properties are consistent with results from atomic force microscopy. The simple Rytov model used for Si/Ge layer structures reproduces very well the frequencies of the FLA modes up to 150 cm(-1). The nonlinearity of phonon dispersion curves in bulk Si for large momenta, however, becomes important for modeling the higher frequencies of observed FLA modes up to 22nd order. The effective dot layer width and an activation energy for thermal intermixing of 2.1+/-0.2 eV are determined from the spectral envelopes of FLA mode intensities of as-grown and annealed Si/Ge dot multilayers. (C) 2004 American Institute of Physics.