30 resultados para QED RADIATIVE-CORRECTIONS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
A feasible scheme for constructing quantum logic gates is proposed on the basis of quantum switches in cavity QED. It is shown that the light field which is fed into the cavity due to the passage of an atom in a certain state can be used to manipulate the conditioned quantum logical gate. In our scheme, the quantum information is encoded in the states of Rydberg atoms and the cavity mode is not used as logical qubits or as a communicating "bus"; thus, the effect of atomic spontaneous emission can be neglected and the strict requirements for the cavity can be relaxed.
Resumo:
In this paper, we present a scheme for implementing the unconventional geometric two-qubit phase gate with nonzero dynamical phase based on two-channel Raman interaction of two atoms in a cavity. We show that the dynamical phase and the total phase for a cyclic evolution are proportional to the geometric phase in the same cyclic evolution; hence they possess the same geometric features as does the geometric phase. In our scheme, the atomic excited state is adiabatically eliminated, and the operation of the proposed logic gate involves only the metastable states of the atoms; thus the effect of the atomic spontaneous emission can be neglected. The influence of the cavity decay on our scheme is examined. It is found that the relations regarding the dynamical phase, the total phase, and the geometric phase in the ideal situation are still valid in the case of weak cavity decay. Feasibility and the effect of the phase fluctuations of the driving laser fields are also discussed.
Resumo:
In a Nd:glass microspherical cavity the enhancement and inhibition of spontaneous-emission processes that are due to cavity QED effects have been observed. The rates of the enhanced spontaneous emission are location dependent and reach a maximum value of more than 10(3) times the free-space value. The large enhancement strongly modifies the decay processes of Nd ions in glass, and the radiative properties of Nd:glass have been changed. As a result a new spectrum including new lasing wavelengths in the Nd:glass sphere has been observed.
Resumo:
A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.
Resumo:
The coupled differential recurrence equations for the corrections to the paraxial approximation solutions in transversely nonuniform refractive-index media are established in terms of the perturbation method. All the corrections (including the longitudinal field corrections) to the paraxial approximation solutions are presented in the weak-guidance approximation. As a concrete application, the first-order longitudinal field correction and the second-order transverse field correction to the paraxial approximation of a Gaussian beam propagating in a transversely quadratic refractive index medium are analytically investigated. (C) 1999 Optical Society of America [S0740-3232(99)00310-5].
Resumo:
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Resumo:
We propose a scheme to generate a supersinglet of three three-level atoms in microwave cavity quantum electrodynamics based on the resonant atom-cavity interaction. In the scheme, three three-level atoms in suitable initial states are sequentially sent through three cavities originally prepared in their vacuum states. After an appropriate atom-cavity interaction process, in the subsequent measurement on the third cavity field the atoms are projected onto the desired supersinglet. The practical feasibility of this method is discussed.
Resumo:
In this communication, we have carried out a detailed investigation of radiative recombination in n-GaAs homojunction far-infrared detector structures with multilayer emitter (n(+))-intrinsic (i) interfaces by temperature-dependent steady-state photoluminescence measurements. The observation of the emitter-layer luminescence structures has been identified from their luminescence characteristics, in combination with high density theoretical calculation. A photogenerated carrier transferring model has been proposed, which can well explain the dependencies of the luminescence intensities on the laser excitation intensity and temperature. Furthermore, the obtained radiative recombination behavior helps us to offer a proposal to improve the operating temperature of the detector. (C) 2001 American Institute of Physics.
Resumo:
Radiative transition in delta-doped GaAs superlattices with a weak coupling was investigted at low temperature, The experimental results show that the transitions from both electron ground state and excited state to hole state have been observed, Based on the effective mass approximation theory, the structures of energy band and photoluminescence spectra for the samples used were calculated. Comparing the experiment with theory, a good agreement was abtained.
Resumo:
This note is to correct certain mistaken impressions of the author's that were in the original paper, “Terminal coalgebras in well-founded set theory”, which appeared in Theoretical Computer Science 114 (1993) 299–315.
Resumo:
We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.
Resumo:
To evaluate the radiative electron capture for the collisions of U89+ ion with N-2, radiative recombination cross sections and the corresponding emitted photon energies are calculated from the ground state 1s(2)2s to 1s(2)2snl(j) (2 <= n <= 9, 0 <= l <= 6) using the newly developed relativistic radiative recombination program RERR06 based on the multiconfiguration Dirac-Fock method. The x-ray spectra for radiative electron capture in the collision have been obtained by convolving the radiative recombination cross sections and the Compton profile of N2. Good agreement is found between the calculated and experimental spectra. In addition, the transition energy levels and probabilities among the 147 levels from the captured 1s(2)2snl(j) have been calculated. From the calculated results, radiative decay cascade processes followed by the radiative electron capture have also been studied with the help of multistep model and coupled rate equations, respectively. The present results not only make us understand the details of the radiative electron captures and the radiative decay cascade spectra in the experiment but also show a more efficient way to obtain the cascade spectra. Finally, the equivalence between the multistep model and coupled rate equations has been shown under a proper condition and the latter can hopefully be extended to investigate other cascade processes.