19 resultados para Place recognition algorithm
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.
Resumo:
The accurate recognition of cancer subtypes is very significant in clinic. Especially, the DNA microarray gene expression technology is applied to diagnosing and recognizing cancer types. This paper proposed a method of that recognized cancer subtypes based on geometrical learning. Firstly, the cancer genes expression profiles data was pretreated and selected feature genes by conventional method; then the expression data of feature genes in the training samples was construed each convex hull in the high-dimensional space using training algorithm of geometrical learning, while the independent test set was tested by the recognition algorithm of geometrical learning. The method was applied to the human acute leukemia gene expression data. The accuracy rate reached to 100%. The experiments have proved its efficiency and feasibility.
Resumo:
Pen-based user interface has become a hot research field in recent years. Pen gesture plays an important role in Pen-based user interfaces. But it’s difficult for UI designers to design, and for users to learn and use. In this purpose, we performed a research on user-centered design and recognition pen gestures. We performed a survey of 100 pen gestures in twelve famous pen-bases systems to find problems of pen gestures currently used. And we conducted a questionnaire to evaluate the matching degree between commands and pen gestures to discover the characteristics that a good pen gestures should have. Then cognition theories were applied to analyze the advantages of those characteristics in helping improving the learnability of pen gestures. From these, we analyzed the pen gesture recognition effect and presented some improvements on features selection in recognition algorithm of pen gestures. Finally we used a couple of psychology experiments to evaluate twelve pen gestures designed based on the research. It shows those gestures is better for user to learn and use. Research results of this paper can be used for designer as a primary principle to design pen gestures in pen-based systems.
Resumo:
随着新型诱饵的快速发展,在日益复杂的目标环境中探测识别真假目标是红外探测识别系统最难解决的技术问题之一.通过分析天空背景下红外小目标,干扰物,噪音及背景的光谱特性,利用人造飞行目标光谱辐射强度高且相邻波段光谱辐射强度连续性特点,提出了一种以多光谱辐射强度和梯度相组合的目标识别高效算法.就此给出了相应的仿真算例,验证了算法在获取的红外图像信噪比很低,背景高亮度,多个诱饵干扰的条件下也能准确识别目标,具有更强的自适应性,更高的识别率和更为快捷的处理能力.
Resumo:
对车牌识别区域分割过程及相关算法进行了研究和讨论,针对某一类情况提出新的思路及方法:断点分析法确定字符区域位置;漫水法和边缘跟踪法结合进行区域分割。在此基础上,实现了一个汽车车牌识别应用系统。
Resumo:
利用人造飞行目标相邻波段光谱辐射强度连续性特点,提出了一种多光谱辐射强度和梯度相组合的目标识别快速算法.该算法首先对多光谱图像进行高通滤波实现背景抑制,而后以残余图像符合高斯统计分布为假设前提,建立了强度周值与光谱梯度闻值的概率密度函数,最后利用3σ准则确定强度阈值以达到噪声中目标和诱饵的检测,确定光谱梯度阔值对二者进行识别,这种依据数据统计特性进行的双阈值确定方法增强了算法的自适应性能.利用此算法进行了强噪声下的目标识别仿真试验,表明了算法的有效性.
Resumo:
A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America
Resumo:
An improved BP algorithm for pattern recognition is proposed in this paper. By a function substitution for error measure, it resolves the inconsistency of BP algorithm for pattern recognition problems, i.e. the quadratic error is not sensitive to whether the training pattern is recognized correctly or not. Trained by this new method, the computer simulation result shows that the convergence speed is increased to treble and performance of the network is better than conventional BP algorithm with momentum and adaptive step size.
Resumo:
A novel approach for multi-dimension signals processing, that is multi-weight neural network based on high dimensional geometry theory, is proposed. With this theory, the geometry algorithm for building the multi-weight neuron is mentioned. To illustrate the advantage of the novel approach, a Chinese speech emotion recognition experiment has been done. From this experiment, the human emotions are classified into 6 archetypal classes: fear, anger, happiness, sadness, surprise and disgust. And the amplitude, pitch frequency and formant are used as the feature parameters for speech emotion recognition. Compared with traditional GSVM model, the new method has its superiority. It is noted that this method has significant values for researches and applications henceforth.
Resumo:
On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite manifold covering in biomimetic pattern recognition, and study its property. Furthermore, we propose this manifold covering algorithm based on Biomimetic Pattern Recognition. At last, the experimental results for face recognition demonstrates that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.
Resumo:
In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.
Resumo:
Based on biomimetic pattern recognition theory, we proposed a novel speaker-independent continuous speech keyword-spotting algorithm. Without endpoint detection and division, we can get the minimum distance curve between continuous speech samples and every keyword-training net through the dynamic searching to the feature-extracted continuous speech. Then we can count the number of the keywords by investigating the vale-value and the numbers of the vales in the curve. Experiments of small vocabulary continuous speech with various speaking rate have got good recognition results and proved the validity of the algorithm.
Resumo:
An algorithm of PCA face recognition based on Multi-degree of Freedom Neurons theory is proposed, which based on the sample sets' topological character in the feature space which is different from "classification". Compare with the traditional PCA+NN algorithm, experiments prove its efficiency.