119 resultados para Pacific Rim
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.
Resumo:
This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.
Resumo:
The in-plane optical anisotropy of three groups of GaAs/AlGaAs quantum well structures has been studied by reflectance-difference spectroscopy (RDS). For GaAs/Al0.36Ga0.64As single QW structures, it is found that the optical anisotropy increases quickly as the well width is decreased. For an Al0.02Ga0.98As/AlAs multiple QW with a well width of 20nm, the optical anisotropy is observed not only for the transitions between ground states but also for those between the excited states with transition index n up to 5. An increase of the anisotropy with the transition energy, or equivalently the transition index n, is clearly observed. The detailed analysis shows that the observed anisotropy arises from the interface asymmetry of QWs, which is introduced by atomic segregation or anisotropic interface roughness formed during the growth of the structures. More, when the 1 ML InAs is inserted at one interface of GaAs/AlGaAs QW, the optical anisotropy of the QW can be increased by a factor of 8 due to the enhanced asymmetry of the QW. These results demonstrate clearly that the RDS is a sensitive and powerful tool for the characterization of semiconductor interfaces.
Resumo:
This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at similar to 1 mu m, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.