123 resultados para Orbit

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple method to detect the relative strength of Rashba and Dresselhaus spin-orbit interactions in quantum wells (QWs) without relying on the directional-dependent physical quantities. This method utilizes the two different critical gate voltages that leading to the remarkable signals of SU(2) symmetry, which happens to reflect the intrinsic-structure-inversion asymmetry of the QW. We support our proposal by the numerical calculation of in-plane relaxation times based on the self-consistent eight-band Kane model. We find that the two different critical gate voltages leading to the maximum spin-relaxation times [one effect of the SU(2) symmetry] can simply determine the ratio of the coefficients of Rashba and Dresselhaus terms. Our proposal can also be generalized to extract the relative strengths of the spin-orbit interactions in quantum-wire and quantum-dot structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the theory of temperature-dependent electron transport, spin polarization, and spin accumulation in a Rashba spin-orbit interaction (RSOI) quantum wire connected nonadiabatically to two normal conductor electrode leads. The influence of both the wire-lead connection and the RSOI on the electron transport is treated analytically by means of a scattering matrix technique and by using an effective free-electron approximation. Through analytical analysis and numerical examples, we demonstrate a simple way to design a sensitive spin-transfer switch that operates without applying any external magnetic fields or attaching ferromagnetic contacts. We also demonstrate that the antisymmetry of the spin accumulation can be destroyed slightly by the coupling between the leads and the wire. Moreover, temperature can weaken the polarization and smear out the oscillations in the spin accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact property is established for the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field with spin-orbit interaction. It is shown that the spin-diagonal Green's function is exactly diagonal in the Landau level index even in the presence of electron-electron interactions. For the Green's function with different spin indexes, only that with adjacent Landau level indexes is non-zero. This exact result should be helpful in calculating the Green's function approximately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that the interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder caused by impurity elastic scattering in a realistic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a spin current diode which can work even in a small applied bias condition (the linear-response regime). The prototypal device consists of a hornlike electron waveguide with Rashba spin-orbit interaction, which is connected to two leads with different widths. It is demonstrated that when electrons are incident from the narrow lead, the generated spin conductance fluctuates around a constant value in a wide range of incident energy. When the transport direction is reversed, the spin conductance is suppressed strongly. Such a remarkable difference arises from spin-flipped transitions caused by the spin-orbit interaction. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin-Hall effect in a generalized honeycomb lattice, which is described by a tight-binding Hamiltonian including the Rashba spin-orbit coupling and inversion-symmetry breaking terms brought about by a uniaxial pressure. The calculated spin-Hall conductance displays a series of exact or approximate plateaus for isotropic or anisotropic hopping integral parameters, respectively. We show that these plateaus are a consequence of the various Fermi-surface topologies when tuning epsilon(F). For the isotropic case, a consistent two-band analysis, as well as a Berry-phase interpretation. are also given. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the charge transport in the quantum waveguides in the presence of the Rashba spin-orbit interaction and the Dresselhaus spin-orbit interaction. We find that the interplay between the Rashba spin-orbit interaction and Dresselhaus spin-orbit interaction can induce a symmetry breaking and consequently leads to the anisotropic charge transport in the quantum waveguides, the conductance through the quantum waveguides depends sensitively on the crystallographic orientations of the quantum waveguides. The anisotropy of the charge transport can even survive in the presence of disorder effect in realistic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin Hall effect in the kagome lattice with Rashba spin-orbit coupling. The conserved spin Hall conductance sigma(s)(xy) (see text) and its two components, i.e., the conventional term sigma(s0)(xy) and the spin-torque-dipole term sigma(s tau)(xy), are numerically calculated, which show a series of plateaus as a function of the electron Fermi energy epsilon(F). A consistent two-band analysis, as well as a Berry-phase interpretation, is also given. We show that these plateaus are a consequence of various Fermi-surface topologies when tuning epsilon(F). In particular, we predict that compared to the case with the Fermi surface encircling the Gamma point in the Brillouin zone, the amplitude of the spin Hall conductance with the Fermi surface encircling the K points is twice enhanced, which makes it highly meaningful in the future to systematically carry out studies of the K-valley spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from effective mass Hamiltonian, we systematically investigate the symmetry of low-dimensional structures with spin-orbit interaction and transverse magnetic field. The position-dependent potentials are assumed to be space symmetric, which is ever-present in theory and experiment research. By group theory, we analyze degeneracy in different cases. Spin-orbit interaction makes the transition between Zeeman sub-levels possible, which is originally forbidden within dipole approximation. However, a transition rule given in this paper for the first time shows that the transition between some levels is forbidden for space symmetric potentials. (C) 2009 Elsevier Ltd. All rights reserved.