2 resultados para Optimal Portfolio Selection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The real earth is far away from an ideal elastic ball. The movement of structures or fluid and scattering of thin-layer would inevitably affect seismic wave propagation, which is demonstrated mainly as energy nongeometrical attenuation. Today, most of theoretical researches and applications take the assumption that all media studied are fully elastic. Ignoring the viscoelastic property would, in some circumstances, lead to amplitude and phase distortion, which will indirectly affect extraction of traveltime and waveform we use in imaging and inversion. In order to investigate the response of seismic wave propagation and improve the imaging and inversion quality in complex media, we need not only consider into attenuation of the real media but also implement it by means of efficient numerical methods and imaging techniques. As for numerical modeling, most widely used methods, such as finite difference, finite element and pseudospectral algorithms, have difficulty in dealing with problem of simultaneously improving accuracy and efficiency in computation. To partially overcome this difficulty, this paper devises a matrix differentiator method and an optimal convolutional differentiator method based on staggered-grid Fourier pseudospectral differentiation, and a staggered-grid optimal Shannon singular kernel convolutional differentiator by function distribution theory, which then are used to study seismic wave propagation in viscoelastic media. Results through comparisons and accuracy analysis demonstrate that optimal convolutional differentiator methods can solve well the incompatibility between accuracy and efficiency, and are almost twice more accurate than the same-length finite difference. They can efficiently reduce dispersion and provide high-precision waveform data. On the basis of frequency-domain wavefield modeling, we discuss how to directly solve linear equations and point out that when compared to the time-domain methods, frequency-domain methods would be more convenient to handle the multi-source problem and be much easier to incorporate medium attenuation. We also prove the equivalence of the time- and frequency-domain methods by using numerical tests when assumptions with non-relaxation modulus and quality factor are made, and analyze the reason that causes waveform difference. In frequency-domain waveform inversion, experiments have been conducted with transmission, crosshole and reflection data. By using the relation between media scales and characteristic frequencies, we analyze the capacity of the frequency-domain sequential inversion method in anti-noising and dealing with non-uniqueness of nonlinear optimization. In crosshole experiments, we find the main sources of inversion error and figure out how incorrect quality factor would affect inverted results. When dealing with surface reflection data, several frequencies have been chosen with optimal frequency selection strategy, with which we use to carry out sequential and simultaneous inversions to verify how important low frequency data are to the inverted results and the functionality of simultaneous inversion in anti-noising. Finally, I come with some conclusions about the whole work I have done in this dissertation and discuss detailly the existing and would-be problems in it. I also point out the possible directions and theories we should go and deepen, which, to some extent, would provide a helpful reference to researchers who are interested in seismic wave propagation and imaging in complex media.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

为实现对模型不确定的有约束非线性系统在特定时间域上输出轨迹的有效跟踪,将改进的克隆选择算法用于求解迭代学习控制中的优化问题。提出基于克隆选择算法的非线性优化迭代学习控制。在每次迭代运算后,一个克隆选择算法用于求解下次迭代运算中的最优输入,另一个克隆选择算法用于修正系统参考模型。仿真结果表明,该方法比GA-ILC具有更快的收敛速度,能够有效处理输入上的约束以及模型不确定问题,通过少数几次迭代学习就能取得满意的跟踪效果。