13 resultados para Opiate

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orbitofrontal cortex is involved in the reinforcing effects of drugs of abuse. However, how the dynamic activity in OFC changes during opiate administration and withdrawal period has not been investigated. We first tested the effects of opiates and dr

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attentional blink reveals the limits of the brain's ability in information processing. It has been extensively studied in people with neurological and psychiatric disturbances to explore the temporal characteristics of information processing and exami

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that opioid transmission plays an important role in learning and memory. However, little is known about the course of opiate-associated learning and memory deficits after cessation of chronic opiate use in a behavioral animal m

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation ( similar to 20%) to synaptic depression ( similar to 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress impairs hippocampal long-term potentiation (LTP), but it is unknown whether the stress evoked by opiate withdrawal has the same effect. Here the authors report that opiate withdrawal for 4 days does not influence basal synaptic transmission, but re

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) rec

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subiculum receives output of hippocampal CAI neurons and projects glutamatergic synapses onto nucleus accumbens (NAc), the subicular-NAc pathway linking memory and reward system. It is unknown whether morphine withdrawal influences synaptic plasticity in

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Repeated exposure to heroin, a typical opiate, causes neuronal adaptation and may result in anatomical changes in specific brain regions, particularly the frontal and limbic cortices. The volume changes of gray matter (GM) of these brain regions, ho

Relevância:

10.00% 10.00%

Publicador:

Resumo:

建立了一种基于图像处理的快速瞳孔直径检测算法,运用此算法提取了反映阿片类药物成瘾人员与正常人对瞳孔光反射变化差异的3个特征值:绝对收缩幅度(absolute amplitude of contraction,AAC)、相对收缩幅度(relative amplitude of contraction,RAC)和收缩斜率(SCV,slope of contraction velocity);分别研究了成瘾、性别、近视、年龄、睡眠剥夺等因素对于这3个特征值的影响。不同性别、近视人员、睡眠剥夺人员与正常人之间的3个特征值均无显著差异,成瘾人员与之对比均显著减小。老年人相对于正常青年人,3个特征值都明显减小;与成瘾人员相比,仅在RAC值上有显著差异。结果表明,阿片类药物成瘾人员除了与正常人外,也与其他具有潜在影响瞳孔变化因素的非阿片成瘾人员在瞳孔对光反射的特征值上具有显著差异。该研究的实验数据为进一步建立基于检测瞳孔对光反射其直径发生变化的方法来快速、非接触地鉴别出阿片类药物成瘾人员提供了可靠的依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

已有的研究表明,眶额叶在解剖上与现在已知的药物滥用相关的脑区是紧密联系在一起的。例如,眶额叶在药物滥用和强迫性重复行为中起作用,且随着脑成像技术的应用,越来越多的证据表明眶额叶参与了药物滥用。但是我们并不了解在阿片给药和戒断期间眶额叶脑区活动是如何变化的。因此,我们在实验中采用了Mn2+增强的核磁共振成像(Manganese-enhanced magnetic resonance imaging,MEMRI,4.7T)技术和脑电(EEG)记录的方法,以研究大鼠眶额叶在给与阿片类药物(盐酸吗啡)以及戒断过程中的动态变化。 MEMRI是一种近年才发展起来的新型技术。研究表明,Mn2+是Ca2+的类似物,可以通过Ca2+通道进入兴奋性的神经元里面并结合到胞内的蛋白质和核酸上的Ca2+和Mg2+结合位点上 (MILDVAN and COHN, 1963; EISINGER et al., 1965)。另外,Mn2+的顺磁性也为它成为核磁共振成像的造影剂提供了前提条件。可是成功应用MEMRI的前提就是要在适当的时间把合适剂量的Mn2+传递到靶点上。因此,Mn2+在注射到靶点后,是否能够在有效的时间内反映大脑活动的变化就成为一个非常重要并且在技术上较为棘手的问题。在给实验大鼠脑区微量注射Mn2+(80mMol/L,200nl)的同时,通过微量注射兴奋性神经递质谷氨酸(Glu 0.5mM/L)或抑制性递质γ-aminobutyric acid(GABA 0.5M/L)以改变靶点神经元兴奋性的方法,检测Mn2+能否反映脑区的活动变化。另外,我们随机选取实验动物,分别在注射Mn2+ 3小时、5小时和8小时后对三组大鼠(n=5)进行10%福尔马林灌流,并且通过观察大鼠眶额叶脑区Mn2+强度的变化来研究最佳的灌流时间。我们的实验结果表明,Mn2++Glu组的右侧脑区/左侧脑区的Mn2+亮度比Mn2+空白对照组增加了20%(p=0.016, student t-test, *p <0.05),也远大于Mn2++GABA组(p=0.047, *p<0.05)。结果表明,当神经元被兴奋的时候,较多的Mn2+可以通过Ca2+通道进入兴奋的神经元内,使得Mn2+的成像亮度增加。由于Mn2+成像亮度的增加可以反映神经元的兴奋活动,因此可以显示出靶点区的脑活动。另外,在研究灌流时间对Mn2+亮度影响的实验中发现,注射Mn2+ 5小时后灌流得到的信噪比分别比注射Mn2+3小时(p=0.055)和8小时(p=0.004,*p<0.05)高出24%和32%。总之,我们采用微量注射Mn2+(80mM/L,200nl)后5小时用10%福尔马林心脏灌流的方法获得了较好的结果。另外在试验中我们首先观测了大鼠吗啡戒断后的行为学指标和检测大鼠戒断后条件化位置偏好的程度。实验结果表明大鼠可以建立非常明显的条件化位置偏好,但在湿狗抖等行为学指标上无明显症状。这说明大鼠对于吗啡(10mg/kg, 一天两次,持续12天)形成了明显的心理依赖而无明显的生理依赖。此外,MEMRI的结果表明,在吗啡给药的第1天和第6天,大鼠眶额叶的Mn2+强度与空白对照组相比有显著的降低( one-way ANOVA, Post Hoc Dunnett’s C Tests), F (6,28)=7.242, P<0.001);而在戒断第3天又恢复到正常水平,在戒断第5天和第7天Mn2+强度跟空白对照组相比没有显著性差别(one-way ANOVA, *p<0.05)。脑电(EEG)的结果表明,急性吗啡诱导的gamma波段的EEG显著降低(Two-way ANOVA, F(1,10)=13.626,p=0.006)。然而在戒断第1天gamma波段的EEG与空白对照组相比是增加的。在戒断第3天和戒断第5天,gamma波段的EEG与空白对照组相比也有显著性增强。以上研究结果表明:大鼠眶额叶脑区的动态变化与整个吗啡给药和戒断过程是密切相关的;此外,MEMRI在探讨药物滥用以及成瘾等机制上有很大的应用前景。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

阿片,多巴胺、胆碱及谷氨酸神经递质系统在学习记忆中起着重要作用,且它们之间存在着相互关系,它们的功能失调和人类一些精神疾病密切相关。本论文分别探讨了这4类递质系统在学习记忆中的作用,并选用不同剂量的吗啡合并多巴胺受体激动剂和拮抗剂,胆碱拮抗剂,NMDA受体拮抗剂在小鼠和猕猴空间记忆任务中,检测阿片和这些神经递质系统之间的相互关系。结果发现:吗啡依赖于剂量和任务间隔地致使小鼠Y-迷宫空间识别记忆和猕猴工作记忆受损;海洛因依赖患者出现依赖性别和任务方向的地图/图标跟随和记忆认知障碍;多巴胺受体激动剂和拮抗剂对小鼠和猕猴的空间记忆有不同影响;胚胎期及成长期阻断多巴胺受体功能,可引起小鼠一系列学习记忆及活动性改变,撤药后是否逆转根据不同的抗精神病药物而不同;乙酰胆碱受体拮抗剂损伤小鼠和猕猴的空间记忆;NMDA受体拮抗剂氯胺酮可使小鼠空间记忆巩固过程受损,但不影响非空间记忆;MK-801损伤猕猴迷宫空间记忆再现,并降低2种延缓反应的工作记忆;当合并吗啡和其它神经递质药物时,可见吗啡和多巴胺受体激动剂和拮抗剂,乙酰胆碱受体拮抗剂,NMDA受体拮抗剂均有不同程度的相互作用,有关作用机制还有待进一步实验的探讨。了解阿片和其它神经递质系统相互作用的机制将有助于揭示药物成瘾的生化机理,寻找药物心理成瘾等神经精神疾病的治疗手段和策略。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CE/tris(2,2-bipyridyl) ruthenium(ll) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL), CEECL, with an ionic liquid (IL) detection system was established for the determination of bioactive constituents in Chinese traditional medicine opium poppy which contain large amounts of coexistent substances. A minimal sample pretreatment which involves a one-step extraction approach avoids both sample loss and environmental pollution. As the nearby hydroxyl groups in some alkaloid such as morphine may react with borate to form complexes and IL, as a high-conductivity additive in running buffer, could cause an enhanced field-amplified effect of electrokinetic injection. Running buffer containing 25 mM borax-8 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) IL (pH 9.18) was used which resulted in significant changes in separation selectivity and obvious enhancement in ECL intensities for those alkaloids with similar structures. Sensitive detection could be achieved when the distance between the Pt working electrode and the outlet of separation capillary was set at 150 mu m and the stainless steel cannula was fixed approximately 1 cm away from the outlet of the capillary. Quantitative analysis of four alkaloids was achieved at a detection voltage of 1.2 V and a separation voltage of 15 kV in less than 7 min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.