108 resultados para Oil-contaminated
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
稠油中的胶质和沥青质是导致稠油污染土壤难以彻底降解的关键要素,而目前传统的生物修复方法很难满足其处理要求。针对这一难题,本文研究了高级氧化-生物耦合修复方法处理稠油污染土壤,达到了使稠油中胶质和沥青质高效去除的目的。 本文采用蛭石模拟土壤,研究稠油污染土壤的高级氧化(臭氧、芬顿)-生物耦合处理方法。分析了氧化时间、水土比、污染土壤陈化时间和污染浓度对臭氧氧化效率的影响,以及H2O2加入量和H2O2/Fe2+摩尔比对芬顿预处理效率的影响;同时优化了高级氧化与微生物混合菌之间的耦合条件;并根据稠油成分的变化,探讨了稠油降解机制。 实验结果表明,模拟稠油污染土壤的最佳臭氧-生物耦合条件为:臭氧氧化30min,生物段采用混合菌1降解14d,此时,土壤中总石油烃、饱和烃、芳烃、胶质和沥青质的降解率分别为60.78%、65.59%、82.74%、26.61%;芬顿-生物耦合处理的最佳条件为:H2O2 加入量为27ml,H2O2与Fe2+的摩尔比为10:1,此时,模拟土壤中稠油总石油烃、饱和烃、芳烃、胶质和沥青质的降解率分别为35.41%,9.33%,49.82%,45.19%。 高级氧化预处理不仅能够减小生物段负荷,而且能够提高胶质和沥青质的生物可利用性,微生物可将胶质和沥青质降解为饱和烃、芳烃或其他物质,降解效率取决于预处理的程度。高级氧化-生物耦合处理降解效率高于单独采用氧化预处理、生物处理效率,因而高级氧化-生物耦合修复方法是一种可行的稠油污染土壤修复方法。
Resumo:
沈抚灌区是我国面积最大、污灌历史最长的石油类污水灌溉区,土壤中大分子量多环芳烃污染严重,对当地粮食生产与生态安全造成严重危害。对此类污染土壤进行生物修复,对保证农产品的安全,实现当地人与自然的可持续发展具有重大的意义。 本研究以沈抚灌区污染土壤中大分子多环芳烃芘为主要研究对象,采用稳定同位素比率分析技术(IRMS),以磷脂脂肪酸(PLFA)为生物标记物,分析污染土壤参与芘降解的优势微生物类群;并以此为指导,采用分子生物学手段和传统微生物学分析方法,筛选土壤中的高效降解菌,并追踪其释放到土壤中后的动态变化与调控。 从沈抚灌区土壤富集培养芘的降解菌,经过双层平板法初筛和芘降解菌液体摇瓶复筛,获得5株以芘为唯一碳源生长的具有较高降解活性菌株。 将筛选的降解菌投加到污染土壤中,以13C标记的芘为代谢底物,以土壤微生物的磷脂脂肪酸为生物标记物,采用稳定同位素比率分析方法(GC-C-IRMs),分析投加的降解菌在原位土壤中的降解作用。结果显示,与不加菌的对照土壤相比,富含13C的磷脂脂肪酸指纹图谱相似度较高的为投加了菌株B05和菌株B15的土壤,芘的降解效率也最高,表明这两株菌在原位土壤芘降解中发挥了重要作用。根据形态学观察、16项生理生化鉴定和16S rDNA序列分析结果,将菌株B05鉴定为 Aminobacter ciceronei,将菌株B15鉴定为 Microbacterium arabinogalactanolyticum。菌株B05初步确定为一株新的芘降解菌,并对菌株培养条件进行了优化。 采用PCR-DGGE方法,研究了筛选的5株降解菌在不同的营养条件下释放到土壤中后的数量和代谢活性的变化。PCR-DGGE图谱分析表明:投加初期外加菌在竞争中占据优势,但是随时间推移,营养物质的消耗,优势逐渐消失,PCR-DGGE的条带趋向于一致。菌株B05的稳定期相对较长,在DGGE图谱中的条带相对密度大,而且对芘的降解率最高,是一株具有潜在应用价值的高效降解菌。混合菌比单一菌降解率高,添加碳氮源有利于外加菌群更快更好的适应在污染土壤中生存,而且有助于对多环芳烃的降解。
Resumo:
稠油组分非常复杂,胶质沥青质含量较高,使稠油污染土壤的生物修复难度很大。对稠油中胶质沥青质分的降解是彻底修复稠油污染土壤的关键。试验中利用辽河油田污染土壤中筛选并纯化出来的几株细菌、真菌和放线菌,以胶质沥青质作为碳源,考察不同菌株处理的去除率变化。发现0d-14d期间是微生物去除胶质沥青质的活跃期,42d之后土壤中胶质沥青质的减少趋缓,是生物修复的转折点。筛选出优势降解菌株:细菌22B;真菌中F2006、F2008、F9902,放线菌A2013、A2016混合菌F2006+22B、F6+22B。同时考查了表面活性剂吐温-80对菌株去除胶质沥青质能力的影响,发现吐温-80对不同菌株有促进或抑制作用。利用上述优势菌株处理5ryn稠油污染土壤,并在42d时,通过采取补加菌液、添加N、P营养物质和添加碳源处理来提高微生物对土壤中稠油的去除能力。经过56天的处理,细菌22B对稠油的去除率最高,达27.420&;混合菌的去除率在23.64%-26.24%。比较三种处理措施对微生物降解稠油能力的影响时,发现不同菌株对这三种措施的反应并不相同。同时土壤中残留石油烃的族分析证实了土壤中的重质成分是可以被微生物降解的;而稠油污染土壤中的烷烃和芳香烃的含量则呈现动态变化。稠油污染土壤的生物修复后的毒性检验表明,不同菌株处理土壤的毒性因选择的菌株及采取的措施不同而异,其中土壤毒性最小的是22B添加碳源处理;毒性最强的是F2008加菌处理。补加菌液、添加营养和碳源措施会使微生物对稠油降解能力有所加强,但是也加速了某些微生物产生毒性较稠油更大的中间产物的生成,使土壤更加不适合植物的生长。本研究从辽河油田污染土壤中筛选出石油烃降解菌株,对稠油中最难降解的胶质沥青质进行处理,从中选择优势的降解菌株对稠油污染土壤进行生物修复,为稠油污染土壤的生物修复打下理论基础。
Resumo:
介绍一种可应用于高粘度稠油管输的新工艺。即用自行研制的蒸汽引射器采用无界引射方式,将蒸汽直接注入到输油管道中,利用蒸汽释放的热量提高稠油温度降低粘度,从而达到降低稠油输送压降的目的,它比间接加热输送工艺所用的蒸汽量或耗煤量大大减少。方法在辽河油田输油管线上进行了工业现场试验,取得了很好的效果。
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called sigma transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.
Resumo:
The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.
Resumo:
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.
Resumo:
The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.
Resumo:
This work is devoted to study of the slip phenomenon between phases in water-oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.
Resumo:
A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.
Resumo:
High-efficiency separation of the oil/gas/water mixtures is a significant issue in offshore oil industry. To reduce the total cost by means of reduction in weight and space compared with conventional separators, a novel compact compound oil/gas/water separator is developed. The research works on oil-gas-water separation by compound separating techniques is described in this paper. The innovative separator is a gravity settling tank with helical pipes within and T-shaped pipes outside. Both experiments and numerical simulations are presented to study the separating performance and efficiency of the helical pipes, which are the main part of the separator.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D